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Abstract

As the exiting wind farms are growing older and the future wind turbines are
growing bigger, fatigue assessments are gaining importance to the wind energy
industry. Accurate fatigue analyses can help operators in the decision making to
extend the lifetime of existing wind farms when they are close to their designed
end-of-life. Moreover, it can help wind farm designers to optimize the designs of
fatigue-driven substructures.
All operating wind turbines are equipped with a SCADA system, necessary during
operation for the controlling of the plant. However, this SCADA data can be used
for other purposes as well. In this thesis the possibility to optimize the use of
the available SCADA data (1s and 10 minute statistics) is explored. Although
the focus of the thesis lies in fatigue and lifetime assessment, some possibilities
for performance monitoring are considered too. It is shown that under-performing
turbines in a wind farm can be detected by calculating and comparing power curves
based on 10 minute statistics of SCADA data. Moreover, changes in performance
over time can be detected as well. However, results are very dependent on the
quality of the data and more specific the quality of the wind speed measurement.
To overcome this problem, the concept of Rotor Effective Wind Speed is imple-
mented. Here, the wind speed is estimated by using measured produced power,
rotor speed and blade pitch angle.
For the remainder of the thesis, the transition towards fatigue is made. An im-
portant input for any fatigue assessment is the estimation of acting loads on a
structure. In the particular case of a wind turbine, various loads can be detected.
The main research question in this chapter is to estimate these loads as accurate
as possible using SCADA data only. Given the low frequent data (1Hz) and the
non-existence of wave-related parameters in the available SCADA subset, the only
reproducible load by SCADA is the thrust load. It is proposed to use a neural
network to reproduce the thrust load. This neural network was trained with a com-
bination of SCADA data and measured thrust loads, obtained using strain sensors
installed on the substructure. The method was validated on multiple datasets
of different turbines at different wind farms, including the cross validation of a
trained model on different wind turbines of the same type in a single offshore wind
farm.
Since the SCADA data can only be used for the reconstruction of the low frequent
thrust load, additional techniques are necessary to reconstruct a full load history
caused by all loads acting on the structure. For a fatigue assessment, the stress
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history caused by all loads at fatigue critical locations in the structure is highly
valuable. Two different techniques to reconstruct the stress history at any loca-
tion in the structure, including the fatigue hotspots, are presented and compared.
Both techniques use a combination of low frequent thrust load estimations and ac-
celerometers installed at accessible locations in the tower. One of the techniques
is based on modal decomposition and expansion, while the other makes use of a
Kalman filter.
The next step in this thesis is to perform a lifetime assessment of multiple fa-
tigue critical locations in the structure of the offshore wind turbine, including the
monopile and the transition piece. Therefore the state-of-the-industry techniques
are implemented for cycle counting and damage calculation. Moreover design doc-
uments of the wind turbine are consulted to decide on safety factors and specific
S-N curves. To extend the calculated damage towards a lifetime, probability dis-
tributions regarding environmental conditions are needed. This thesis proposes a
strategy for life time assessment and elaborates on several choices that can be made
to perform such an assessment. Moreover this strategy is applied on a fictional
offshore wind turbine and possible decisions made for the lifetime assessment are
compared to each other.
Lastly, the correlation between measured damage and environmental conditions
is shown by comparing the results of multiple instrumented turbines. The possi-
bility of extrapolating measured damages at one turbine to other turbines within
the same farm using environmental probability distributions is explored and com-
mented upon. Moreover differences in measured damage are shown and explained.
In the final chapter the main findings of this research are concluded and future
perspectives are discussed.



Samenvatting

Nu de bestaande windparken steeds ouder worden en de nieuwere turbines almaar
groter, wordt er in de industrie meer en meer belang gehecht aan vermoeiingsana-
lyses van bestaande wind turbines. Deze kunnen operatoren helpen bij beslissin-
gen over levensduurverlenging van oudere windparken. Bovendien kunnen zulke
analyses ook ontwerpers helpen om de (vermoeiings-gedreven) ontwerpen van de
funderingen te optimaliseren.
Alle operationele wind turbines zijn uitgerust met een standaard meetsysteem,
SCADA genaamd, nodig voor de bediening van de installatie. Deze SCADA data
kan echter ook nog gebruikt worden voor andere doeleinden. Deze thesis toont de
mogelijkheid om het gebruik van de beschikbare SCADA data (1s en 10 minuten
statistieken) te optimaliseren. Hoewel de focus in deze dissertatie op vermoeiing
en levensduur ligt, worden ook mogelijkheden om de prestaties van de turbines te
evalueren bekeken. Het is aangetoond dat turbines die onderpresteren opgemerkt
worden door individuele vermogen curves te berekenen en vergelijken. Ook kun-
nen veranderingen in de tijd gedetecteerd worden. De kwaliteit van de SCADA
data en meer specifiek de windsnelheidsmeting heeft echter een grote invloed op
de resultaten. Hierdoor is ook het concept Rotor Effective Wind Speed gemple-
menteerd, waarbij de windsnelheid bepaald wordt op basis van de metingen van
andere parameters beschikbaar in de SCADA dataset.
Vanaf het volgende hoofdstuk wordt de transitie naar levensduur en vermoeiing
gemaakt. Vaak wordt een vermoeiingsanalyse gestart op basis van betrouwbare
metingen of inschattingen van de werkende krachten op de structuur. In het ge-
val van een wind turbine, kunnen meerdere krachten onderscheiden worden. De
hoofdonderzoeksvraag van dit hoofdstuk is om zo’n betrouwbare, accurate inschat-
ting van deze krachten te maken op basis van enkel SCADA data. Gezien de laag
frequente datasignalen (1Hz) en het gebrek aan golf-gerelateerde parameters in de
SCADA subset, blijft enkel de drukbelasting door de wind over als reproduceer-
baar op basis van SCADA data. Hiervoor wordt een neuraal netwerk getraind
met een combinatie van SCADA data en gemeten belastingen. De methode werd
gevalideerd aan de hand van meerdere datasets, komende van verschillende turbi-
nes in verschillende windparken. Hierbij werd ook een kruisvalidatie uitgevoerd,
waarbij een model getraind op 1 turbine gevalideerd werd op een andere turbine
van hetzelfde type binnen hetzelfde park.
Aangezien SCADA data enkel kon gebruikt worden om de drukbelasting van de
wind op de turbine te reconstrueren, zijn bijkomende technieken nodig om ook
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een inschatting te kunnen maken van de andere krachten die op de structuur wer-
ken. Voor vermoeïıngsanalyses is de spanning veroorzaakt door al deze krachten
op de meest kritische locaties in de structuur van groot belang. Twee verschil-
lende technieken om deze spanning te reconstrueren op elke locatie in de structuur
zijn beschreven, gëımplementeerd en vergeleken. Beide technieken combineren de
ingeschatte drukbelasting en versnellingsmeters die gëınstalleerd werden op toe-
gankelijke plaatsen in de toren. De ene techniek is gebaseerd op een modale de-
compositie en expansie, terwijl de andere techniek gebruik maakt van een Kalman
filter.
De volgende stap in deze dissertatie is het uitvoeren van een levensduur analyse
voor meerdere vermoeïıngs-kritische locaties in de structuur van een wind turbine
in zee. Hiervoor werden vaak gebruikte technieken in de industrie gëımplementeerd
om het aantal cycli in een tijdssignaal te tellen en hieruit de opgelopen schade te
berekenen. De nodige parameters werden bepaald op basis van standaarden uit
de industrie en de ontwerpdocumenten. Om de berekende opgelopen schade uit
te breiden naar een levensduur zijn waarschijnlijkheidsverdelingen voor meteo-
rologische omstandigheden, bv. windsnelheid, nodig. Een mogelijke strategie is
voorgesteld in deze thesis, waarbij aandacht besteed werd aan de verschillende
keuzes die hiervoor gemaakt moesten worden. Deze strategie is toegepast op een
fictieve wind turbine, waarbij ook verschillende mogelijkheden voor de te maken
keuzes voor zo’n levensduur analyse vergeleken werden.
Als laatste is ook de correlatie tussen gemeten schade en meteorologische con-
dities vergeleken voor verschillende gëınstrumenteerde turbines. De mogelijkheid
om deze gemeten schade op één turbine te extrapoleren naar andere turbines bin-
nen hetzelfde park op basis van meteorologische waarschijnlijkheidsverdelingen is
onderzocht en besproken. Verder werden ook de verschillen in gemeten schade
getoond en verklaard.
In het laatste hoofdstuk van deze thesis worden de belangrijkste bevindingen sa-
mengevat en mogelijke toekomstige onderzoeksmogelijkheden besproken.



Nomenclature

List of operators

• #{•} : count

• •̄ : average

• s• : standard deviation

List of symbols

• ∆ε : relative error

• ε : strain (-)

• θ : blade pitch angle (◦)

• λ : tip speed ratio (-)

• ρ : air density (kg/m3)

• σ : stress (Pa)

• Ω : rotor speed (rad/s)

• ψ : yaw angle (◦)

• Acs : surface area of the cross section (m2)

• AR : swept area of rotor (m2)

• B : air pressure (mbar)

• cP : power coefficient (-)

• cT : thrust coefficient (-)

• D : Damage (-)

• E : Young’s modulus (Pa)
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• FN : normal load (N)

• FT : thrust load (N)

• FT,m : measured thrust load (N)

• FT,s : simulated thrust load (N)

• F̂T : modeled thrust load (N)

• F̂T,corr : air density corrected modeled thrust load (N)

• H : height (m)

• Ic : area moment of inertia (m4)

• M : bending moment (Nm)

• Mtl : bending moment in side-side direction (Nm)

• Mtn : bending moment in fore-aft direction (Nm)

• Mtn,m : measured bending moment in fore-aft direction (Nm)

• N : number of data points

• P : output power (W )

• Pr : probability (-)

• R : radius (m)

• Rrotor : rotor radius (m)

• Ri : inner radius (of cross section) (m)

• Ro : outer radius (of cross section) (m)

• R0 : gas constant of dry air = 287, 05 J
kg·K

• T : air temperature (◦C)

• t : wall thickness (mm)

• V : (measured nacelle) wind speed (m/s)

• Vn : air density corrected wind speed (m/s)

• Vrews : rotor effective wind speed (m/s)

• z : distance to hub (m)
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List of abbreviations

• 5PL-DE : 5 Parameter Logistic curve fitted by Differential Evolution

• CSF : Combined Safety Factor

• DEL : Damage Equivalent Load

• ERT : Extremely Randomized Trees

• EW : East-West

• FA : Fore-Aft

• FBGS : Fiber Bragg Grating Sensor

• FEM : Finite Element Model

• IQR : Inter-Quartile Range

• KNN : K-Nearest Neighbors regression

• LAT : Lowest Astronomical Tide

• LCoE : Levelized Cost of Energy

• MAE : Mean Absolute Error

• MDE : Modal Decomposition and Expansion

• MOB : Method Of Bins

• MRE : Mean (Absolute) Relative Error

• MP : Monopile

• MSF : Material Safety Factor

• NS : North-South

• O&M : Operation and Maintenance

• OHVS : Offshore High Voltage Station

• OWT : Offshore Wind Turbine

• OWF : Offshore Wind Farm

• PDF : Probability Density Functions

• RAE : Relative Absolute Error

• REWS : Rotor Effective Wind Speed

• RF : Random Forest regression
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• RMSE : Root Mean Squared Error

• RPM : Rotations Per Minute

• RUL : Residual Useful Life

• SCADA : Supervisory Control And Data Acquisition System

• SCF : Stress Concentration Factor

• SE : Size Effect

• SEF : Static Extrapolation Factor

• SG : (resistive) Strain Gauge

• SGBRT : Stochastic Gradient Boosted Regression Trees

• SS : Side-Side or Sideways

• TI : Turbulence Intensity

• TP : Transition Piece

• TW : Tower
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Chapter 1

Introduction

In this chapter the topic of the thesis is introduced. The general context of the
research is given in Section 1.1, where the main topics are identified: performance
monitoring and fatigue assessment. Both can be achieved (partly) using the ex-
isting SCADA data of the turbines. Those topics are discussed in more detail in
Section 1.2, respectively in Sections 1.2.1, 1.2.2 and 1.2.3. The objectives set for
this thesis are defined in Section 1.3. In the same section the outline of the thesis
is given. To conclude, the main contributions in the thesis are summarized in
Section 1.4.
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1.1 Research context

The importance of renewable energy and more specific wind energy has rapidly
increased over the past decade, mainly in order to reach the Kyoto agreement.
Figure 1.1 shows the evolution in time of the total installed capacity for several
energy sources from 2005 until 2017 in the European Union. While the capacity
of most traditional energy sources, like coal, fuel oil and nuclear energy, rarely
changed or even decreased, most renewable energy sources, e.g. biomass, solar
and wind energy, gained in capacity. The installed capacity by the wind industry
in particular has quadrupled in a decade time, becoming the second largest form
of power generation capacity in the European Union [1].

Figure 1.1: Total power generation capacity for all important energy sources sep-
arately in the European Union from 2005 until 2017 [1]

Looking into the wind industry more specifically, wind turbines can be installed
on land, onshore (Figure 1.2a), or in shallow and deeper waters, offshore (Fig-
ure 1.2b). While installation onshore is usually easier and consequently cheaper,
the average production of offshore wind turbines often surpasses that of onshore
wind turbines. The annual report of 2017 of Wind Europe [1] showed the total in-
stalled capacity onshore exceeded the total installed capacity offshore in Belgium,
while the percentage of the average annual electricity demand covered by wind can
be equally divided among onshore and offshore. The higher production offshore is
mainly caused by stronger and more consistent wind and less obstructions such as
high buildings or trees. Installation on the other hand is more difficult and costly
due to, among others, the additional construction of site-specific foundation struc-
tures, the installation on water using specialized vessels and the need for longer
power cables to transport the produced energy to the consumers on land. Not
only the installation is easier and cheaper onshore, the maintenance of offshore
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(a) Onshore [2] (b) Offshore [3]

Figure 1.2: Wind farms are installed on land (onshore) or at sea (offshore)

wind turbines is more challenging as well. Maintenance costs are higher since off-
shore turbines are not as easily accessible as onshore wind turbines. In particular
the specific conditions offshore, such as wave activity, complicate the maintenance
schedule. E.g. if sea conditions block access to the turbines for boats, mainte-
nance actions can only be performed using much more expensive alternatives such
as helicopters.

Due to the more demanding challenges the offshore wind industry is facing,
most of the wind turbines can be found onshore, as indicated by Figure 1.3. How-
ever a rapid increase in capacity installed offshore over the past years is clearly
present.

Figure 1.3: Total installed capacity of onshore and offshore wind in the European
Union from 2005 until 2017 [1]

Looking at offshore wind farms in Belgium specifically, this trend could be seen
as well in the past years. Moreover, the installed capacity offshore will continue to
increase in the coming years with still two farms (partly) under construction and
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three more farms planned. Figure 1.4 shows the currently operational wind farms
(C-Power, Belwind, Northwind and Nobelwind), together with those (still partly)
under construction (Rentel and Norther) and those expected (Seastar, Mermaid
and Northwester 2).

Figure 1.4: Belgian offshore wind farms [4]

The rapid growth in installed capacity offshore can be explained by, among
others, the possibility to install more wind turbines in one farm and the increasing
size of wind turbines installed on site. Recently it was announced the Belgian
offshore wind farm Northwester 2 will install in 2019 wind turbines with a capacity
of 9,5 MW, rotor diameters of 164 m and heights up to 220 m [5]. Installing bigger
turbines in the farm has the advantage less turbines are needed to obtain the same
total capacity. This reduces the installation costs, since also less, though bigger,
foundations are required.

Despite the growth, it is still quite expensive to install and maintain offshore
wind turbines. Wind farm operators are thus constantly looking to increase the
energy production or to decrease the installation, operational and maintenance
costs. All these gains are reflected in a reduction of the so-called Levelized Cost
of Energy (LCoE), the actual cost of producing energy.
A reduction of the LCoE, can be obtained in multiple ways. First of all, the early
detection of under performing wind turbines in the fleet is crucial. These turbines
do not produce the intended amount of energy and should be maintained to opti-
mize their production. Detecting these turbines in the wind farm can be achieved
by performance monitoring.
An alternative approach to increase the total energy production of a single wind
farm is by extending the lifetime of existing wind turbines and their foundation
with a couple of years. In doing so the overall energy production is significantly
enlarged with relatively low additional costs. For example a 5 year extension on
a 20 year-old wind farm will imply a 25% increase in lifetime energy production,
while only maintenance and operational costs continue. An accurate fatigue as-
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sessment of each wind turbine structure individually, where the current strength
or weakness of the metal is evaluated, can help in the decision for a possible life-
time extension. Moreover, such an assessment can help optimizing operational
and maintenance and thus lower these O&M costs.
Such a fatigue assessment of existing wind turbines is also of great value to opti-
mize the design of future wind farms as knowledge from the field flows back. With
an optimized design, construction costs of new farms are reduced, ultimately lead-
ing to a lower LCoE.
In both performance monitoring and lifetime assessments the availability of the
proper data is crucial. Installing additional sensors to obtain the proper data is
often expensive or even unfeasible. However, all wind turbines installed are al-
ready equipped with a lot of sensors, generally referred to as the SCADA system
of the turbine. Those measurements are mainly used by the control system of the
turbine. Nonetheless, they are stored and usually available to operators as signals
sampled at 1Hz and 10 minute statistics. While valuable in both performance and
fatigue monitoring, the true potential of SCADA data remains often unused.
The next section will provide a general introduction to the topics discussed in this
thesis. The existing challenges are briefly touched upon. More in depth analyses
and discussions are provided throughout the thesis.

1.2 Introduction to the different topics

Section 1.2.1 gives an overview of the current practice of performance monitoring
for existing wind farms. Section 1.2.2 introduces the importance of fatigue as-
sessments for current and future wind farms. Finally Section 1.2.3 introduces the
main data on which a lot of research is done for this thesis.

1.2.1 Performance monitoring

The primary purpose of wind turbines is to convert the wind into a renewable
source of energy. The amount of energy generated by a turbine can be referred to
as the production of the turbine. The instantaneous production depends mainly
on the instantaneous wind conditions. By design wind turbines are optimized to
do this conversion as efficient as possible for the site they are installed. However,
over time several issues can arise that affect this efficiency and result in a loss
of production. Typical examples of such issues are malfunctioning pitch motors,
yaw-misalignment, ice accretion, blade erosion or any malfunction in the electrical
drive of the wind turbine [6].
Production losses are minimized by early detection of under performing turbines,
i.e. turbines whose production is not as high as one could expect for the current
wind conditions. The current practice in industry to detect under performance
is based on time-based and production-based availabilities [7],[8]. The time-based
availability compares the actual time of operation to the ideal time of operation:

availabilitytime =
operational time

total time
(1.1)
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Figure 1.5: The production signal and corresponding availabilities of three fictional
turbines. In blue, the production of a turbine performing ideally is shown, in red
the production of a slightly under-performing turbine and in yellow the production
of a turbine with some down-time.

The production-based availability compares the actual production to the ideal
production:

availabilityproduction =
realized production of energy

theoretical amount of energy produced
(1.2)

Both indicators should be corrected for standstill conditions, when the turbine is
not producing electricity while the wind conditions indicate production is possible.
While relevant for contractual obligations, standstill conditions can obscure small
but persistent changes in production, that in the long run are just as detrimental.
This is illustrated by Figure 1.5, where the power generated by three different
fictional turbines for two days and the corresponding availabilities are shown. One
turbine produces energy as one can expect for the given wind conditions for that
day, indicated by the blue full line in Figure 1.5a. The second turbine had to
shut down for a moment for maintenance for example, indicated by the yellow
dashed line. Low values barely exceeding 60% for both time and production-based
availabilities are obtained for this turbine (Figure 1.5). The lost production during
this downtime of less than a day would be equivalent to the yearly average energy
consumption of 8 households. The third turbine seems to operate normally, but
produces for some time instances and corresponding wind speeds less energy than
expected. This is indicated by the red dashed-dotted line. This will lead to a
perfect score of 100% for the time-based availability and an acceptable score of
over 80% for the production-based availability. However, during those two days
the same amount of energy was lost as three households would consume during
one year (on average). In reality, a production based availability of 80% will be
detected and looked into, but one can imagine a similar but less pronounced power
loss can remain undetected for a long time (e.g. several months), leading to a lot
more lost energy.

In this thesis, a performance monitoring strategy is presented to detect smaller
but consistent production losses of individual wind turbines within a farm.
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1.2.2 Fatigue assessment

A well-known mechanism to break a structure or object is to apply one single force,
exceeding the ultimate breaking limit or the yield force of the material. However,
multiple examples of failures due to much smaller forces can be found in history.
For example, the Liberty ship S.S. Schenectady, built during the Second World
War, split in two, even before its actual departure (Figure 1.6).

Figure 1.6: Failure of the Liberty ship S.S.
Schenectady due to the formation of cracks
and their propagation to critical lengths until
sudden failure under relatively low but cyclic
loads. [9]

Figure 1.7: Typical fatigue frac-
ture showing the crack initiation,
the crack propagation and the
sudden fracture. [10]

In this case the failure was caused by a relatively small force, but applied
over and over again. By applying such a cyclic loading to a structure, one single
force is applied and removed repeatedly. Such a cyclic loading causes microscopic
cracks at the weakest spot in the original material, i.e. crack initiation. Such a
microscopic crack will grow due to the applied force until a critical size is reached
(crack propagation) and the structure suddenly fails (sudden or fast fracture). The
cyclic loading thus causes the material to degrade over time. This mechanism is
called fatigue.
A typical fatigue fracture surface is shown in Figure 1.7. Here the formation or
initiation of a crack is shown. The propagation of the crack can be observed by the
parallel lines in the material. Finally, the sudden, fast fracture is clearly visible.

In general, all forces exerted naturally to wind turbine structures, both onshore
and offshore, are well below the ultimate force to break the material at once.
However the total load applied on the wind turbine structure varies constantly over
time and is thus assumed cyclic. Therefore, during design, the deterioration of the
material caused by fatigue is taken into account. Offshore, fatigue is often the main
driver for failure of the structure and more specifically the foundation. Given the
fairly new industry, a lot of conservative choices were made during the design of the
first wind farms. As the older wind farms now slowly reach their designed lifetime,
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the question rises if the lifetime may be extended. Such a decision for lifetime
extension is preferably supported by accurate fatigue and lifetime assessments of
the entire structure of the wind turbine. This assessment boils down to interpreting
the loads that the structure was subjected to and translating this in a residual
lifetime. Moreover fatigue analysis of existing wind turbines and their foundation
can optimize future design through a better understanding of loads and dynamics.
The different parts of the substructure of an offshore wind turbine usually consist
of multiple steel elements, welded together. This is shown by Figure 1.8. This
means that, within the entire turbine structure, not all locations have the same
material properties. Some locations, usually the welds between different elements,
are more subjected to fatigue. This is usually caused by higher local stresses and
more (small) defects in the material. These locations are thus more affected by
loads and called fatigue hotspots. The fatigue induced by the load history at these
hotspots is most valuable. Unfortunately for offshore wind turbines installed on
monopiles, these hotspots are often located below water level or subsoil (indicated
in red in Figure 1.9). For those locations it is unfeasible or impossible to mount
sensors once the foundation has been installed.

Figure 1.8: Different elements are
welded (white areas) together to form
the monopile foundation of an offshore
wind turbine. [11]

Figure 1.9: The fatigue hotspots of a
wind turbine installed on a monopile
are usually located around the mud-line.
These locations are unreachable for ex-
isting wind turbines to mount sensors
on. Therefore sensors will be installed
at accessible locations within the tower
and/or transition piece.

Currently, fatigue assessments of support structures, including the fatigue
hotspots, are often based on measurements of the load history [12, 13, 14, 15].
Most of them imply continuous strain measurements at accessible locations. Pos-
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Figure 1.10: The anemometer (encircled in the figure) used to measure wind speed
and wind direction is usually located behind the rotor of the turbine [16]

sible accessible locations are indicated in yellow in Figure 1.9. However, for several
reasons accelerometers are preferred over strain gauges, although this is not the
case for measuring quasi-static loads. In the research presented in [13], the strain
gauges are thus crucial to capture the quasi-static part of the loading.

In this thesis a model is presented to estimate the quasi-static load. This model
is used as a substitute for the strain measurements during a fatigue assessment of
an offshore wind turbine (OWT). Moreover a methodology to calculate the actual
lifetime of an OWT based on strain measurements is given. Finally the possibility
to extrapolate damage measurements within a wind farm is explored.

1.2.3 SCADA data

Every wind turbine is installed with a Supervisory Control And Data Acquisition
(SCADA) system. The main purpose of the SCADA system is to monitor and
control plants, for which reason it records data continuously. The main advantage
of using SCADA data is its availability on all turbines in a fleet, providing relevant
insight in the behavior of each of the turbines in the farm, without the need to
instrument all of them.
However, the correct calibration and quality of the sensors contained in the SCADA
is not guaranteed over the entire lifetime. A common example is the anemometer
to measure wind speeds and wind directions. It is installed behind the rotor, as
shown in Figure 1.10. The anemometer is known for its high uncertainties due
to poor calibrations. Moreover, the quality and accuracy of the data can differ
between the different wind turbine manufacturers. A proper preprocessing of the
SCADA data and associated filtering process is advised.

1.3 Objectives and outline of the thesis

The main objective of this thesis is to optimize the use of the available SCADA
data. This is done in two domains: performance monitoring and fatigue assess-
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Figure 1.11: The different objectives set to achieve an accurate fatigue assessment
of an offshore wind farm.

ment. In Chapter 3 the topic will be performance monitoring, while the following
four chapters will handle (elements of) fatigue assessments.

To start Chapter 2 introduces some basic concepts in the wind industry. More-
over, an overview is given of the available datasets and the performed measurement
campaigns at 11 offshore wind turbines, located across 5 different wind farms.

In terms of performance monitoring the objective set implies to detect under-
performing wind turbines. Since SCADA data is already widely used for perfor-
mance monitoring, the primary objective of the current research is not to detect
severe defects and losses in production. Instead Chapter 3 introduces a technique
based on power curves to detect small but persistent under-performances of tur-
bines. In this chapter only 10min statistics of SCADA signals is used to monitor
the entire wind farm.

For fatigue assessment the ultimate goal is to have an indication of consumed
or expected lifetime for each turbine within a wind farm. To achieve this, multiple
objectives were set, which should be achieved consecutively. These objectives are
summarized by Figure 1.11 and elaborated upon in the following paragraphs.

An important input for any fatigue assessment is the load history as measured
or expected at the OWT. Therefore the first objective regarding a fatigue assess-
ment set in this thesis was to reconstruct as much as possible from the actual
load history using SCADA data only. In Chapter 4 SCADA data, primarily 1s
signals, is used to estimate one of the loads (the thrust load) acting on a wind
turbine and its substructure. To do this, limited use of strain data is required.
The focus in this chapter lies on only one turbine, but it is proven the concept is
easily transferable to the entire fleet.

An accurate fatigue assessment is based on the combination of all loads acting
on the wind turbine. For that reason, a second objective was set to estimate the
stress history, at any location in the substructure of the OWT, caused by the
full load acting on the OWT. Chapter 5 introduces two different techniques to
combine the thrust load estimates with accelerometers to obtain a stress history
at any location in the structure caused by all loads. In this chapter, the focus lies
on only one turbine.

Once an accurate stress history is obtained for any location, including the fa-
tigue hotspots, this should be translated into accumulated damage and finally into
an expected lifetime for each of the locations of interest within the substructure.
This was the next objective set. Chapter 6 describes the current practice for dam-
age calculation. During this procedure a lot of choices have to be made. These are
extensively discussed in this chapter. Results in this chapter focus on one turbine.
However, the procedure can be easily transferred to any instrumented turbine.
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By achieving the last objective, an accurate fatigue assessment can be per-
formed for any instrumented turbine. However, not all turbines within the farm
are instrumented. The last objective consists in the extrapolation of the results
obtained from the instrumented turbines (fleet leaders) towards non-instrumented
turbines within the farm. Essential analyses towards farm-wide fatigue assessment
are presented in Chapter 7. In this chapter, only a couple of turbines are instru-
mented with additional strain sensors. For all other turbines in the farm 10 minute
statistics of the common SCADA signals are available.
The datasets used in every chapter, the topic and the scope is summarized by
Table 1.1.

Finally Chapter 8 concludes the thesis.

Table 1.1: Summary of the research topic, the data involved and the considered
scope in every chapter

Chapter Topic Data involved Scope

3
Performance

10min SCADA farm
monitoring

4
Thrust load 10min SCADA 1 turbine,
estimation 1s SCADA easily transferable

strain sensors (limited) to farm

5
Full load 1s SCADA

1 turbineestimation accelerometers
strain sensors (limited)

6
Lifetime 10min SCADA 1 turbine,

assessment strain sensors easily transferable
to farm

7
Lifetime 10min SCADA

farm
assessment strain sensors

1.4 Original contributions in this work

Results in this thesis are based on research presented at international conferences
and published articles. Following, an overview is given of the most important
contributions, together with the needed references.

1. The development of a performance monitoring strategy to detect slightly un-
der performing turbines, or turbines of which the performance is decreasing
over time, within a wind farm [17]. More information is given in Chapter 3.

2. The development of a model to estimate the acting thrust loads on a wind
turbine, based on SCADA data only [18]. More information is given in
Chapter 4.

3. Integration of thrust load estimates in the modal decomposition and expan-
sion technique to assess full load stress signals at any location [19]. More
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information is given in Section 5.3.

4. Two different techniques to reconstruct the full load stress signal at any
location in the structure of the wind turbine were compared [20]. More
information is given in Section 5.4.

On top of these contributions, some results presented herein are novel to this
thesis, and have not been presented in current detail before:

1. The application of Rotor Effective Wind Speed on multiple turbines. To
achieve this multiple functions to estimate the power coefficient were imple-
mented, fitted and compared. Detailed information is given in Section 3.5.

2. A general framework for fatigue assessment of a single instrumented offshore
wind turbine on a monopile foundation was implemented. More information
is given in Chapter 6.

3. A first investigation into the feasibility of using the so-called fleet-leader
concept for fatigue assessment of the foundations for offshore wind turbines
using solely a limited number of instrumented turbines and the SCADA data.
More information can be found in Chapter 7.



Chapter 2

Technical background

In this chapter some basic principles and definitions about a wind turbine and the
offshore wind industry are clarified in Section 2.1. In Section 2.2 information is
given about the available data throughout this thesis. Additionally, the different
measurement campaigns performed offshore are summarized.
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2.1 General concepts in (offshore) wind industry

2.1.1 General working principle

The purpose of a wind turbine is to generate electricity, using the potential energy
of the wind passing by. As the wind passes the rotor blades, the rotor will rotate
at a relatively low speed. Depending on the turbine type, this low-speed rotational
movement is first converted into a high-speed rotational movement using a gearbox.
The rotational movement is then transferred into electricity by a generator. The
generator and, if present, the gearbox are located in the nacelle of the turbine, as
shown in Figure 2.1.

Figure 2.1: A schematic illustration of the nacelle of a wind turbine. The blades
are pushed by the wind, causing the rotor to rotate. The gearbox transforms a
low rotational speed into a high rotational speed. The torque is transformed into
electric power by the generator. [21]

The higher the speed of the wind passing by, the faster the rotor will rotate (up
to a certain speed) and the more electricity is generated by the generator. This is
shown by the time signals of 10 minute averages of wind speed and generated power
in Figure 2.2. Therefore, every wind speed can be coupled to a specific amount of
power generation. This is already done during design, by the manufacturer, and
resulted in a warranted power curve. Such a power curve is shown in Figure 2.3.
As already mentioned, an increase in wind speed will cause an increase in rotor
speed (up to a certain speed). Therefore, every wind speed can also be coupled to
a specific value for rotor speed. This relation is illustrated in Figure 2.4.
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Figure 2.2: Time signals of 10 minute
averages of two SCADA signals: wind
speed and generated power
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speed

As one can see, the turbine is not producing any electricity nor rotating under
a certain wind speed due to too little available wind energy. The wind is not
capable of exerting a high enough torque on the blades to make the rotor rotate.
In this region, the turbine is so-called idling. The minimum wind speed for which
the turbine starts generating electricity is called cut-in wind speed. The cut-in
wind speed is typically around 3 or 4m/s.
From cut-in, the rotor speed increases as the wind speed increases until rated rotor
rpm is reached. The rated rotor rpm is the maximum speed at which the rotor
will rotate. Together with an increasing rotor speed, the electricity generation is
increasing as well.
Once rated rotor rpm is reached, the blades will start to rotate around their
longitudinal axis for increasing wind speeds. This rotation of the blades is called
pitching the blades. By pitching the blades, only a part of the wind is caught by the
rotor. The amount of pitch is determined by the controller of the turbine, based
on measurements done by the SCADA system. Blades are pitched just as much
as needed to keep the rotor rpm constant. Therefore, the higher the wind speed,
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the more the blades will be rotated. The rotation of the blades is controlled by
setting the ideal value of the blade pitch angle. The relation between blade pitch
angle and wind speed is given by Figure 2.5. The blade pitch angle is illustrated
in Figure 2.6.

Figure 2.6: Illustration of yaw and blade pitch angle of a wind turbine, where the
rotating plane is the plane the rotor blades rotate in [22]

As the wind speed still increases, the electricity generation rises as well. Once
rated power is reached, the pitch angle will be adjusted in such a way the electricity
generation never exceeds the rated power.
During storms, the risk of causing damage to the wind turbine’s components by
the high energy of the wind is too high if the rotor is still rotating. Therefore, the
turbine is shut down once the wind speed reaches a certain value, referred to as
cut-out wind speed. Cut-out wind speed is usually around 25m/s, which can be
related to 10 at the Beaufort scale and classified as a storm. This shut down is
obtained by pitching out the blades, meaning rotate the blades in such a way all
wind passes the rotor without being caught by the blades.

As the direction of the wind changes, the orientation of the wind turbine will
change as well. This is controlled by the yaw angle of the turbine. The yaw
angle is illustrated in Figure 2.6. A malfunctioning of the yaw motors can cause
a difference between the orientation of the wind turbine and the wind direction.
This is called yaw-wind misalignment and usually causes a decrease in production.

In theory, a wind turbine should always produce as much power as given by the
manufacturer’s power curve for a given wind speed. However, a variety of reasons
can cause a deviation between the actual generated power and the ideal power as
given by the power curve. During planned maintenance actions the turbine is not
rotating regardless of the wind speed for instance. Whenever the turbine is not
rotating nor producing electricity for any reason while the wind speed did exceed
the cut-in wind speed, the turbine is so-called in standstill.
Another common deviation from the warranted power curve is de-rating or output-
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limitation. In this case the turbine is still producing power, though not as much
as expected. This is illustrated in Figure 2.7. This might be imposed by the wind
farm operator to reduce the wake loads affecting the turbines downstream. Yet,
de-rating can also be caused by a defective component of the turbine without the
knowledge of the operator.

Figure 2.7: A measured power curve during which the turbine was output-limited.
Data points measured during de-rating are framed.

Throughout this thesis, a distinction between operating states of the turbine
is often made. To avoid confusion, an overview is given of the definitions used for
the different operating states.

- Idling: the turbine is not rotating nor producing electricity because the
actual wind speed is below the cut-in wind speed. If the wind suddenly
increases however, the turbine will start rotating and generating power.

- Generating: the turbine is rotating and producing electricity. Here a dis-
tinction between under rated power and at rated power can be made.

- Operational: The turbine is operating. This means it produces energy
when the wind speed is high enough and is idling when the wind speed is too
low. This operational state is thus a merge between idling and generating and
consequently excludes cut-out. The data corresponding to this operational
state is selected based on the value of the blade pitch angle, which cannot
exceed a predefined value.

- Standstill, parked or non-operational: the turbine is not rotating nor
producing electricity although the wind speed is usually above cut-in wind
speed. This operational state includes cut-out. For wind speeds below cut-
in, the turbine is not ready to start rotating or generating power once the
wind speed would increase. This state is generally characterized by a very
high value for the blade pitch angle. This state is the opposite of operational.

- Non-generating: The turbine is not producing any electricity. This state
is a merge between idling and standstill and is the opposite of generating.

- Normal operating: The turbine is operating as expected. This implies
without any defect or fault, e.g. de-rating.
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2.1.2 Availabilities

The state-of-the-industry to perform performance monitoring is based on the cal-
culations of availabilities. Two main types can be distinguished: time-based and
production-based availabilities.
The time-based availability is basically the percentage of the time the turbine was
available to produce energy and calculated using Equation 2.1.
The production-based availability is rather a comparison between actual and ideal
production and is calculated using Equation 2.2.

availabilitytime =
available time

available time+ unavailable time
(2.1)

availabilityproduction = 1− potential production− actual production

potential production
(2.2)

For both availabilities, the interpretation of available time or potential pro-
duction can differ and is important to define. Therefore all available data is first
divided in three groups. One group represents available time or actual produc-
tion, a second group represents the unavailable time or potential production and
the last group represents data which was not considered for the calculation. The
decision on which data is divided in which group depends on the needed type of
availability. Often a distinction is made between the operator’s point of view and
the manufacturer’s. The first is called the operational availability, while the lat-
ter is called the technical availability. In general, the operator will consider less
conditions in which the turbine is not producing power as available compared to
the manufacturer, e.g. a technical standby or a requested shutdown. Moreover
to calculate the technical availability, more categories are not considered in the
calculation, e.g. scheduled maintenance. More information is given in [7] and [8].

2.1.3 Structural components of an offshore wind turbine

The main components of an offshore wind turbine can be seen in Figure 2.8.
Starting from the top, one can see the nacelle, the tower, the transition piece and
the foundation. As already shown in Figure 2.1, the nacelle contains the gearbox,
if present, and the generator to produce electricity from the rotational energy of
the rotor. The turbine blades are attached to the rotor hub, which is connected
to the nacelle. The nacelle is placed on top of the turbine tower. The nacelle and
the tower are the two components an offshore and an onshore wind turbine have
in common.
The tower of an offshore wind turbine is installed on top of a transition piece (TP)
between the tower and the foundation.

The substructure is defined as the merge of all components supporting the
nacelle, being the tower, the TP and the foundation.
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Figure 2.8: An offshore wind turbine and its structural components (modified)
[23]

2.1.4 Foundation concepts for offshore wind

The design of the nacelle and turbine tower is done by the turbine manufacturer
and is similar to the onshore turbines. Given the different site conditions between
offshore wind farms, the foundation is designed site-specific. Multiple foundation
concepts can be identified for offshore wind turbines. Several options are given in
Figure 2.9: gravity-based, monopile, tripile, tripod, jacket or floating options.

Due to the simplicity and relatively low manufacturing costs, the monopile
(MP) is often favored over the other foundation types for a wide range of water
depths (up to ca. 50m). Figure 2.10 shows over 80% of the installed offshore
wind turbines in Europe in 2016 have a monopile foundation. The dominance of
monopiles in Europe can be explained by the relatively shallow waters. However
at many other locations, in Europe and worldwide, waters are a lot deeper. For
example in Scotland, Norway, the Atlantic coast of Portugal or the west coast of
the United States of America. Here bottom-fixed substructures are not an option.
Therefore floating wind turbines are considered.
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Figure 2.9: Multiple foundation concepts for offshore wind turbines. Bottom-fixed
options are illustrated in blue, from left to right: gravity based, monopile, tripile,
tripod, jacket. Floating concepts are illustrated in red. [24]

Figure 2.10: Installed offshore foundations in Europe in 2016 [25]
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2.1.5 Turbulence and wake

As the wind passes the turbine rotor and energy is extracted from the air, the
original air flow is changed. The wind after the turbine often has a decreased
average speed. Moreover more chaotic and local changes in pressure and velocity
are present. The latter is usually indicated as an increase in turbulence in the air
flow. This phenomena of changing air flow is called the wake effect. Figure 2.11
visualizes the wake effect of the turbines within an offshore wind farm.

Figure 2.11: Visualization of wakes in an offshore wind farm [26]

Given the decrease in wind speed caused by wake, the performance of a down-
stream turbine is influenced by the wakes of upstream turbines. Moreover the
more turbulent air in the wake of a turbine causes more damage to the down-
stream turbines than a wake-free air stream would cause.

2.1.6 Loads

Several different loads act on a wind turbine, both onshore and offshore, summa-
rized by Figure 2.12.(a). In Figure 2.12.(b) the spectral composition of these
loads is illustrated conceptually.
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(a) Illustration of acting loads

(b) Frequency spectrum of acting loads

Figure 2.12: Overview of all loads acting on an offshore wind turbine.

First of all the wind caught by the rotor exerts a thrust load on the turbine
structure. As the wind varies slowly, large, slow varying load cycles are induced
on the turbine and the substructure. The variations in wind are referred to as
turbulence. A typical representation of the frequency content of the atmospheric
turbulence is the Kaimal wind turbulence spectrum [27, 28]. This Kaimal spectrum
is indicated in green in Figure 2.12b. To quantify the thrust load FT exerted by
these wind variations, Equation 2.3 [29] is often used. Here, the air density ρ, the
swept rotor area AR, the wind speed V and the thrust coefficient cT are required.
Unfortunately, the thrust coefficient cT is often only known to the manufacturer.

FT =
ρ

2
cTARV

2 (2.3)

In case of an offshore wind turbine, an additional wave load is present. This
wave load is caused by the variation in sea surface elevation or wave height. Usually
the energy density spectrum of the surface elevation is represented by a wave
spectrum. To represent the wave activity in the North Sea, the JONSWAP wave
spectrum is often used [27, 30]. The frequency range corresponding to the wave
spectrum is slightly higher than the wind turbulence spectrum, depending on site
conditions. This is indicated in blue in Figure 2.12b.
Moreover, the passing of the blades introduces additional loads on the substructure
of the turbine. These loads are called rotor harmonics and depend on the rotor
speed. The exact frequency of the 3P harmonic can be calculated using the rotor
speed and bearing in mind the passing of three blades every rotation. So for a
rotor speed of 16RPM the 3P frequency occurs at 0, 8Hz. Any multiple of this
frequency is another rotor harmonic, being 6P, 9P, etc. Since the rotor speed varies,
the associated frequencies change. Therefore a frequency zone is allocated to rotor
dynamics in Figure 2.12b. In case a rotor imbalance is present, an additional 1P
harmonic can be detected at a third of the frequency of the 3P harmonic.
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These loads are amplified by the structural dynamics at the resonance frequencies.
Every structure moves in a specific way when excited by an external force of a
frequency close to its resonance frequency. Multiple resonance frequencies and
corresponding mode shapes can be identified, of which the first two or three are
the most important for a wind turbine. The first two mode shapes of an OWT
installed on a monopile are shown in Figure 2.13, both in fore-aft and side-side
direction. Each of these mode shapes correspond to a specific resonance or natural
frequency, indicated by FA1 and FA2 for fore-aft direction in Figure 2.12b. The
shape and natural frequency of a mode of a structure depend on the design of
the structure. Therefore the careful positioning of the structural modes is part of
design optimization. For example the first tower resonance frequency is targeted
to remain below the 3P harmonic, but above the 1P harmonic, in what is called a
soft-stiff design.

Figure 2.13: Visualization of first two mode shapes in fore-aft direction and side-
side direction of an offshore wind turbine

2.1.7 Power coefficient

The power curve, as illustrated by Figure 2.3, is often represented by Equation 2.4
[31], where P the generated power, ρ the air density, cP the power coefficient, AR
the swept rotor area and V the wind speed.

P =
ρ

2
cPARV

3 (2.4)

Just like the thrust coefficient cT , the power coefficient cP is often only known
to the manufacturer. Although, based on the actuator disk model, both are related
to each other by the axial induction factor a (Equations 2.5 and 2.6) [32].

cP = 4a(1− a)2 (2.5)

cT = 4a(1− a) (2.6)
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2.2 Available data sources

2.2.1 SCADA

Throughout the thesis, SCADA data is used consequently to assist in performance
and lifetime monitoring. As already indicated, the SCADA system is installed
on every turbine by default. Its purpose is mainly to control the plant, but the
recorded data is stored as well. In industry, 10 minute statistics of SCADA signals,
in short 10min SCADA data, are already widely used to perform performance
monitoring for instance. Recently, also the SCADA signals sampled at 1 second
have gained importance in industry. Both 10min as 1s SCADA data is used in
this thesis.

Available parameters

The entire SCADA system consists of many sensors and measurement signals.
However, for performance and lifetime monitoring only few of them are needed.
Therefore, only a subset of the SCADA database was used in this thesis. The
available parameters for this thesis were typically wind speed, generated power,
blade pitch angle, rotor speed, yaw angle, wind direction and ambient temperature.
In case of 10min SCADA data, usually only the mean value over 10 minutes was
available. Although, in case of the wind speed often the standard deviation over
10 minutes was available as well. Sometimes the standard deviation, minimum
and maximum over 10 minutes was available for all parameters.

Limitations

Despite the default existence of the SCADA system, there is no guarantee all
sensors perform and are maintained properly over the entire lifetime of the wind
turbine. Therefore the quality of the SCADA data can be questionable. As already
mentioned in Section 1.2.3, a common example is the anemometer installed behind
the rotor to measure wind speeds and wind directions. Often the quality of the
SCADA data depends on the turbine manufacturer.
Moreover, the use of SCADA data is also limited depending on the application.
When looking at load estimation, only one acting load can be estimated using
SCADA data. As given in Section 2.1.6 and summarized by Figure 2.12 various
loads act on an OWT. Part of these loads are high frequent, with a frequency
exceeding 0,5Hz. However according to Nyquist-Shannon sampling theorem, only
loads with a frequency up to 0,5Hz can be detected at their proper frequency
(cfr. aliasing) using the 1s SCADA signals. On top of that, the SCADA system
contains no signals related to wave activity. Therefore, the wave load cannot be
reconstructed using SCADA data either.

Error codes

On top of the normal signals, the SCADA system also records error codes. Op-
posed to the typical SCADA signals, error codes are not stored continuously. Only
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at timestamps where the error code has changed, data is recorded.
Error codes contain additional information about the state of the turbine. There-
fore they are often used by the operators to explain the reason for down-time.

2.2.2 Data from a monitored turbine

On top of the available SCADA data sets, additional sensors were installed on a
couple of wind turbines located in different offshore wind farms. This section will
introduce the installed sensors and instrumented turbines.

Typical instrumentation setup

An instrumented turbine is typically equipped with
both strain gauges and accelerometers. All sensors
are installed at easily accessible locations, like the
existing platforms in the transition piece and tower.
Figure 2.14 shows strain gauges are installed at the in-
terface between tower and transition piece, indicated
by the arrow left of the turbine. Moreover accelerom-
eters where installed on multiple levels, among which
the TP-TW interface, indicated by the arrows at the
right of the turbine.
The specific number of sensors and heights of the plat-
forms depend on the wind turbine. This is usually the
same for all instrumented turbines within one farm. Figure 2.14: Standard

monitoring setup of an
instrumented OWT

Accelerometers

Two accelerometers are usually installed at typically 3 levels of the tower. These
accelerometers capture the vibrations in two perpendicular radial directions. Some-
times two additional accelerometers are installed at the top level, to identify the
torsional vibrations in the tower. Acceleration signals are useful to understand
and capture the dynamics of the structure. For example, the estimation of the
resonance frequencies and damping values of the structure can be done based on
acceleration measurements [33].

Strain gauges

Typically four or six strain gauges are installed in axial direction at the interface
between tower and transition piece. Two types of strain gauges were installed
during the different measurement campaigns, optical strain gauges (Fiber Bragg
Grating Sensors, FBGS) and classical resistive strain gauges (SG). The first mea-
sures the change in the wavelength of reflected light, while the latter measures
the electrical resistance. In general, installing a resistive strain gauge is cheaper
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than installing an optical strain gauge. The only exception is when multiple strain
gauges are needed along one single string of fiber (e.g. instrumenting the entire
monopile). Another advantage of the optical strain gauge is the non-sensitivity to
lightning. Both types of strain gauges are temperature-sensitive. Therefore the
resulting measurements of each strain gauge should be compensated for the local
temperature first.
The strain sensors are used to calculate the bending moment and resulting stresses
acting on the structure. The measured (axial) strains ε can be used to calculate
the stress σ, using Young’s modulus E and a simplified version of Hooke’s law
(Equation 2.7). The resulting stresses are still as observed by each sensor sepa-
rately.

σ = Eε (2.7)

The general equation for normal stress σz
induced by a normal force FN and bend-
ing moments MNS and MEW in cylindri-
cal coordinates is given by Equation 2.9,
where Acs represents the surface area of
the cross section, Ro the outer radius, Ri
the inner radius, θh the heading and Ic
the area moment of inertia. The area mo-
ment of inertia can be calculated using
Equation 2.8. An illustration of a typical
cross section is given in Figure 2.15.

Figure 2.15: Illustration of a cross
section of the tower, transition piece
or monopile

Equation 2.9 can be used for every sensor installed on the turbine. However,
at least three sensors are necessary to extract the normal load FN and bending
moments in both directions MNS and MEW (North - South and East - West) from
the measurements. In general, one can find Equation 2.10, for a setup with three
sensors.

Ic =
π

2
(R4

o −R4
i ) (2.8)

σz =
FN
Acs

+
Ri
Ic

(MNSsinθh −MEW cosθh) (2.9)

σz1σz2
σz3

 =

 1
Acs
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sinθh,2 −RiIc cosθh,2

1
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Ri
Ic
sinθh,3 −RiIc cosθh,3


 FN
MNS

MEW

 (2.10)

According to the standards for the wind industry [34] the bending moments
acting on the tower are given in two directions, the fore-aft and the side-side.
Basically, the fore-aft direction is the same as the wind direction, while the side-
side is perpendicular to the fore-aft. This is illustrated by Figure 2.16.

The resulting bending moments in north-south and east-west directions are
converted into bending moments in fore-aft Mtn and side-side direction Mtl by
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Figure 2.16: Load conventions according to IEC61400-13 [34]

multiplying by an additional rotation matrix R (Equation 2.11) using the turbine
yaw ψ in the SCADA.

R =

[
cos(−ψ + 180◦) sin(−ψ + 180◦)
−sin(−ψ + 180◦) cos(−ψ + 180◦)

]
(2.11)

2.2.3 Meteorological data

On top of the SCADA dataset and the measurements performed during the several
measurement campaigns, additional meteorological data is available from multiple
sources as well.

• air pressure, 10 minute averages: measured at the Offshore High Voltage
Station (OHVS) at Belwind

• wave height and wave period, 10 minute averages: measured at the Offshore
High Voltage Station (OHVS) at C-Power and Belwind (only wave height)

2.2.4 Overview of considered measurement campaigns

Multiple measurement campaigns were performed in the framework of the OWI-
lab. For this thesis a lot of data collected during those measurement campaigns
was used. In this section a general overview of the different considered campaigns
is provided. Due to confidentiality reasons, no specifics of the wind farms involved
are given.

In total 11 turbines were instrumented across 5 different wind farms. Most of
these turbines were installed on monopiles, some on jackets. Table 2.1 gives an
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overview of the number of instrumented turbines in the different wind farms, to-
gether with the duration of the measurement campaigns. Some of these campaigns
are still ongoing.

Table 2.1: Measurement campaigns at different offshore wind farms performed by
OWI-lab

Wind farm Number of turbines Duration of measurement campaign (years)
WindFarm1 1 2
WindFarm2 2 3,25
WindFarm3 3 3
WindFarm4 2 2
WindFarm5 3 1

All 11 turbines were instrumented based on the typical instrumentation setup
as explained in Section 2.2.2. This includes strain measurements at one level,
typically close to the interface between tower and TP, and multiple levels of ac-
celerometers in the tower. All the measurements done at all instrumented turbines
combine into an available data set containing strain and acceleration measurements
for a total period of almost 25 years.
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Performance monitoring

In this chapter the performance of a Belgian offshore wind farm is monitored using
only the 10min SCADA data set of the turbines. Monitoring is done based on the
power curve, representing normal operation of the turbines. To make sure only
normal operation of the turbine is accounted for, several filters are applied to the
SCADA data.
In the wind energy industry, the power curve is usually obtained using the method
of bins. This method is compared to other univariate and multivariate techniques,
such as k-nearest neighbors regression or random forest regression. Univariate
techniques give little improvements with respect to the standard method of bins,
while multivariate techniques can improve the modeling significantly (up to 20%).
Moreover, in this chapter modeled power curves are also used to monitor several
turbines or an entire wind farm over time. The monitoring approach consists in
calculating a power curve of normal operation regularly and tracking those cal-
culated power curves using health indicators. A seasonal effect can be detected.
Moreover under-performing turbines or degrading production can be easily discov-
ered. However, an important dependency on measured wind speed and a lack of
reliable wind speed measurements is found.
A solution for the unreliable wind speed measurements is suggested by calculating
the rotor effective wind speed. To estimate the power coefficient needed, several
functions from the literature are tested. It is shown the coefficient of these func-
tions should be fit for the specific turbine type. Moreover the inclusion of a pitch
offset might be advisable in some cases.
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3.1 Introduction

Wind farm operators are interested most in the performance of a wind turbine,
and more specific in the possible production loss. A well-known parameter in
the industry to detect performance issues is the availability (time-based [7] or
production-based [8]), where actual and possible production (time) is compared.
This is explained in more detail in Section 2.1.2
On the other hand, anomalies in power production are often detected using mod-
eled power curves [35, 36, 37, 38, 39, 40], which represent the relation between
wind speed at the turbine and power production of the turbine.
Both monitoring techniques are mainly used to detect down-time or relatively
big power losses. But fail to detect small changes in production. If these small
changes persist over time, the accumulated lost production can become significant.
For this reason, a more sensitive monitoring approach is introduced to detect even
the small changes over time.
The techniques proposed are applied on an operating wind farm. More informa-
tion about the available data is given in Section 3.2.1. This approach is based
on power curve modeling during normal operation. To be able to detect small
changes, abnormalities in power production should be filtered out. Multiple filters
are proposed in Section 3.2.2.
In general, the power curve modeling technique used in the industry, the method
of bins, is utilized and explained in Section 3.3. Moreover, this standard technique
is compared to other techniques, such as k-nearest neighbors regression or random
forest regression, as well.
The monitoring approach consists in calculating the power curve under normal op-
eration on a regular basis and tracking the resulting health indicators (Section 3.4).
The proposed approach is highly dependent on a reliable wind speed measurement
[40]. Unfortunately, the SCADA measurement is known to be unreliable [41, 42].
For that reason, Section 3.5 elaborates on the calculation of the rotor effective
wind speed, using other SCADA parameters to estimate the wind speed.
Finally, Section 3.6 concludes this chapter.

3.2 Data

3.2.1 Available datasets

For this chapter, a subset of SCADA data of the Belwind wind farm located in
the Belgian North Sea was available. The Belwind wind farm consists of 55 V90
3MW Vestas turbines. The layout of the wind farm is shown in Figure 3.1.
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Figure 3.1: The layout of the Belgian Wind farm Belwind, consisting of 55 3MW
V90 Vestas turbines (white dots) and one Offshore High Voltage Station (red dot)

The SCADA subset contained 10 minute statistics for a period of a little over
4 years for the following parameters: wind speed, produced power, rotor rpm,
blade pitch angle, wind direction, yaw angle and ambient (air) temperature. For
all parameters the averaged value was available, for wind speed, produced power,
rotor rpm and blade pitch angle the minimum, the maximum and the standard
deviation were also available. The wind speed is measured by an anemometer
mounted on the nacelle, just behind the rotor of the turbine.
Although also error codes were logged during this period, it was chosen not to use
those to obtain the final results. This decision was made because the added value
of the error codes in this analysis was little due to the lack of understanding of
their definition.

In addition, meteorological data is measured at the Offshore High Voltage
Station (OHVS) located in the Belwind farm, as shown in Figure 3.1. From the
available meteorological data at the OHVS only the 10 minute averages of air
pressure were used.

3.2.2 Data preprocessing

Key in all data analyses is a proper preprocessing of the required data. As the
saying goes, garbage in is garbage out. In order to obtain a valid result, invalid
data points should be removed, i.e. filtered out. Additionally, where necessary,
data signals should be corrected.

Filtering

Many possible filters are suggested in literature [43, 44, 45] to exclude all abnormal
data from the dataset for performance monitoring. However, depending on the
application not all filters seem advisable. Moreover some filters are impossible to
implement due to missing or unavailable data. For example in [43] and [44] it is
proposed to remove all data for which the external conditions other than wind
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speed are out of the operating range of the wind turbine, however this information
was not available in the considered research.

In order to be able to keep the flexibility to change the applied filters easily, a
toolbox with several, adjustable filters was created. In Figure 3.2 an overview of
these filters is given.

Figure 3.2: Overview of available SCADA filters in the developed toolbox for
performance monitoring

Here follows more information about all the implemented filters.

• According to [44], the wind turbine should be operating in normal operation
during the measurement period. To ensure this, one could use the error
codes if available. Depending on the wind turbine type, codes corresponding
to abnormal operation should be identified. Then, the data points for which
one or more of these error codes are recorded during the 10 minute interval
are rejected.

• [44] also stated that all data points for which a required signal has been
outside the signal range during the 10 minute interval should be excluded
from the dataset. This can be done by setting a minimum and maximum
allowed value for the mean, minimum or maximum recorded value during
every 10 minute interval. This filter can also be used to exclude start/stop
events from the dataset, as suggested in [45].

• Remove NaN-values: data points for which a required signal was unavail-
able or erroneous should be excluded [44]. If a signal was unavailable or not
operating, a NaN-value is recorded. Hence a filter is included to exclude all
data points for which a NaN-value is detected for one of the signals.
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• Another possible filter consists in excluding all data points for which the
external conditions (other than wind speed) were out of the operating range
of the wind turbine [44]. This is another filter that can be included if error
codes are available. In that case the error codes corresponding to abnormal
external conditions should be identified first.

• All parameter values are 0: Data points for which the turbine was off-
line can be excluded [44]. This usually corresponds to a value of exactly zero
for all required signals.

• Similarly all data points for which the turbine is output-limited (de-rated)
should be excluded [44]. While these points are clearly visible in the plots
(for example Figure 2.7), it is not always easy to remove them automatically.
It may be some error codes correspond to a de-rated condition of the turbine,
but these error codes don’t include all occasions of de-rating. Therefore they
can be filtered out manually, based on the plot, as well if needed.

• Additionally, all data points for which the 10 minute averaged wind direction
is outside the measurement sector should be removed according to [44]. The
measurement sector represents all wind directions for which the air in front
of the turbine is not disturbed by another turbine. This can be defined for
every wind turbine based on the wind farm layout. However for the turbines
in the middle of the farm the measurement sector is empty and no data will
remain if this filter is applied.

• Blade icing: As stated in [44], all data points for which blade icing possibly
occurs are removed. In practice this is done by removing all data points for
which the measured air temperature at the turbine is below zero.

• Severe filters: If only 10 minute statistics should be available, the reason
for which a data point is excluded could have started at the end of the
previous timestamp or ended in the beginning of the next timestamp. Hence
[45] suggests to exclude all timestamps just before and after already excluded
data points.

• Remove statistical outliers: Finally a last filter was included in an at-
tempt to exclude de-rated data points in an automatic manner. This filter
consists in excluding the statistical outliers of the power residuals (com-
pared to the warranty power curve). All data points within the interval
[Q1 − 3(Q3 − Q1);Q3 + 3(Q3 − Q1)] remain, where Q1 indicates the first
quartile and Q3 the third quartile of the residual signal.

Data corrections

Once all required filters are set, some data corrections are proposed in [44].
The most important one is to correct the windspeed for variations in air density,
related to variations in temperature and air pressure. The standard suggests to
correct the data to two reference air densities, the sea level air density and the
average of the measured air density data. Here, only the sea level air density
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(1, 225 kg
m3 ) is chosen as reference air density ρ0. The air density corrected wind-

speed Vn is calculated using Equation 3.1, where V corresponds to the measured
nacelle wind speed in m/s and ρ10min corresponds to the averaged measured air
density over 10 minutes.

Vn = V

(
ρ10min

ρ0

) 1
3

(3.1)

The measured air density ρ10min is calculated using Equation 3.2 [43], where
the averaged measured air pressure over 10 minutes B10min, the averaged measured
air temperature T10min and the gas constant of dry air R0 = 287, 05 J

kg·K is utilized.

ρ10min =
B10min

R0T10min
(3.2)

Moreover, the standard [44] suggests to use a nacelle transfer function to correct
for the distortion of the wind by the rotor and nacelle. Unfortunately, this was
not possible to include here, since no measurement of the wind just in front of the
rotor was available. On top of that, it is not clear whether the post processing of
the raw SCADA data already includes such a nacelle transfer function.

3.3 Power curve modeling

Discussions on performance of wind turbines can be based on availabilities or
power curves. While the first is more susceptible to down-time, the latter evaluates
the performance during normal operation. A power curve essentially represents
the relation between wind speed and produced power, under normal operating
conditions. In literature, a power curve model is often used to detect and/or
classify performance anomalies [35, 36, 37, 38, 39, 40]. By identifying changes in
the power curve, a turbine’s power production process can be optimized.
Many different data mining techniques are applied to model a power curve [46,
47]. In this section the one technique described in an industrial standard, the
method of bins, is explained (Section 3.3.1) and compared to some other techniques
(Section 3.3.2) such as k-nearest neighbors or random forest regression.

As mentioned before, the power curve gives an idea of power production under
normal operating conditions. Therefore it is important to use only data rep-
resenting normal operating conditions to model a power curve. Hence a set of
filters is chosen to exclude all data corresponding to possible downtime or under-
performance of the turbine. Table 3.1 shows the allowed minimum and maximum
values for the required signals. On top of that filters on non-operation and blade
icing are applied as well. Possible de-rating is filtered out manually.

Figure 3.3 shows the remaining (blue dots) and removed (red crosses) data
points after applying these filters for one turbine over a period of 3 months.
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Table 3.1: Interval in which the required signals are considered available and
normally operating.

Wind Speed Power Production Ambient Temperature Air Pressure
(m/s) (kW ) (◦C) (mbar)
[3; 25] ]0; 3300] [−20; 40] [950; 1050]

Figure 3.3: Measured power curve during 3 months for one turbine. The blue dots
represent data points kept after applying the proposed filters, while the red crosses
represent the rejected data.

3.3.1 Method of bins

To calculate a power curve, the method of bins (MOB) is usually used in industry.
To apply the MOB, the data is divided into bins of 0, 5m/s (centered on multiples
of 0, 5m/s) based on the value of the air density corrected wind speed. Afterwards,
the mean values of air density corrected wind speed Vn,i and the output power Pi
are calculated for any bin i using Equations 3.3 and 3.4, in which Vn,ij and Pij
represent the air density corrected wind speed and the power output of data point
j in bin i respectively and Ni the number of data points in bin i.

Vn,i =
1

Ni

Ni∑
j=1

Vn,ij (3.3)

Pi =
1

Ni

Ni∑
j=1

Pij (3.4)

To make sure enough data was used to calculate the power curve, following
checks are performed, as proposed by the standard [43]:

• The covered wind speed range extends from cut-in (3m/s) to 1,5 times the
wind speed at 85% of the rated power of the wind turbine (ca. 17, 5m/s)

• each bin contains at least 3 data points

• the total database contains at least 180 hours of sampled data
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Figure 3.4 visualizes the concept of the method of bins. The grey lines indicate
the bin borders, while the purple crosses indicate the resulting bin centers.

Figure 3.4: Visualisation of the method of bins. A measured power curve is
divided into bins of 0, 5m/s (grey lines show the bin borders). For each bin the
mean value for wind speed and power production is calculated (represented by the
purple crosses).

3.3.2 Advanced techniques for power curve modeling

The analyses described in this section were performed in collaboration with Olivier
Janssens, Rik Van de Walle and Sofie Van Hoecke and were published in [48].

The method of bins (MOB), as described in Section 3.3.1, is a simple and fast
method. However, its performance can be improved by other modeling techniques
[48]. Using only wind speed as an input parameter (univariate models), [48] com-
pared the method of bins to 5 other techniques: 5 parameter logistic curve fitted
by differential evolution (5PL-DE), k-nearest neighbors regression (KNN), random
forest regression (RF), extremely randomized trees (ERT) and stochastic gradient
boosted regression trees (SGBRT). If possible, the techniques were applied on a
combination of input parameters as well, so-called multivariate models. The con-
sidered input parameters were wind speed, yaw angle, blade pitch angle, rotor rpm
and wind direction.
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(a) RMSE of the univariate models

(b) RMSE of the multivariate models

Figure 3.5: Root Mean Squared Error between measured produced power and
modeled produced power for 6 different modeling techniques and 3 different tur-
bines. Both univariate (a) and mulitvariate (b) results are shown. Results are
based on 17 days of measurements, training of the modeling was done using 75
days of measurements.
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Different models were trained for 3 different turbines, based on 75 days of mea-
surements. Figure 3.5 shows the resulting Root Mean Squared Errors (RMSE)
between the measured and the modeled produced power during a validation pe-
riod of 17 days. It can be seen that no significant improvement (maximal from
144, 71kW to 140kW for the first turbine, from 106, 68kW to 99, 97kW for the
second and from 157, 82kW to 150, 98kW for the third) is found when using a
different univariate model compared to the MOB, while almost all multivariate
models clearly improve the modeling performance. The best improvements ob-
tained for multivariate models reduced the measured RMSE at the first turbine
from 144, 71kW to 115, 57kW . For the second turbine a reduction from 106, 68kW
to 89, 51kW was found and for the third from 157, 82kW to 103, 26.
When using a univariate model, the modeled power curve basically boils down to
one line. However, the measured power clearly shows some deviation from this
line. If a multivariate model is used, this deviation from the line can be explained
partially by other parameters. This explains the better results for multivariate
models and is shown in Figure 3.6.

(a) The power curve of turbine three when only the
wind speed as input is used

(b) Power curve when five input variables are used

Figure 3.6: Modeled and measured power curve for univariate tree (a) and multi-
variate tree (b).
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3.4 Power curve monitoring

To detect smaller performance changes during normal operation, a monitoring ap-
proach based on power curve calculation is suggested here. A comparison between
a power curve, calculated regularly with data during normal operation, and the
warranted power curve given by the manufacturer is the basis of the approach.

3.4.1 Reference power curve

For every turbine type, the manufacturer provides a warranted power curve. This
power curve gives the power production guaranteed by the manufacturer for the
entire wind speed range. Figure 3.7 shows the warranted power curve for the
Vestas 3MW V90 turbine, installed in the Belwind wind farm.

Figure 3.7: Warranted power curve of the turbine installed at Belwind, as given
in the technical specifications of the manufacturer [49]

Multiple reasons can cause some deviation of the actual power curve with re-
spect to the warranted power curve. Meteorological conditions can cause some
deviation, such as wind shear, wind veer, turbulence or wake. While affecting
the power production, these meteorological conditions are outside the control of
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the operator. However, issues related to the turbine operation can decrease the
power output as well, including the blade condition, turbine suitability, the con-
trol algorithm or maintenance [40]. Some of these issues can be resolved through
maintenance, but only when the problem is detected. Therefore regularly calcu-
lating the actual power curve and comparing it to the warranted power curve can
increase the total power production of a wind turbine by detecting possible faults
early.

To compare the actual power curve to the warranted power curve, three dif-
ferent metrics are defined. One is based on the difference between measured and
warranted power, the second is based on the area under the curves and the last
is based on potential energy production. Conceptual illustrations of the two first
metrics are provided in Figure 3.8.

Figure 3.8: Health indications based on the actual power curve. The difference
between the warranted curve (grey) and the actual power curve (dashed) can be
defined by the difference between actual and warranted power (black) or by the
ratio of the area under the actual power curve (green + blue) and the area under
the warranted power curve (blue).

Assuming the warranted power curve is represented by an array of warranted
power PW with associated wind speed VW and the actual power curve by PA and
VA, the three different metrics can be defined as following.
The first one HI∆P is based on the difference in power, as given by Equation 3.5.

HI∆P =

√ ∑
i∈rangemeas

(
PA
(
VA (i)

)
− PW

(
VA (i)

))2

(3.5)

To calculate HI∆P , first the warranted power associated with the actual av-
eraged wind speed for each bin PW

(
VA (i)

)
is calculated first based on linear

interpolation between the given data points for the warranted power curve. This
is represented by Equation 3.6.
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PW
(
VA (i)

)
− PW

(
VW (i− 1)

)
PW

(
VW (i+ 1)

)
− PW

(
VW (i− 1)

) =
VA (i)− VW (i− 1)

VW (i+ 1)− VW (i− 1)
(3.6)

Figure 3.9 illustrates the exact calculation, zooming in on one bin only.

Figure 3.9: Calculation for health indication based on the difference in power
(indicated by the blue arrow).

The second metric HIarea compares the area under the curves, as defined by
Equation 3.7.

HIarea =

∑
i∈rangemeas

PA(i)+PA(i−1)
2 ·

(
VA (i)− VA (i− 1)

)
∑

i∈rangemeas

PW (i)+PW (i−1)
2 ·

(
VW (i)− VW (i− 1)

) (3.7)

For the last metric, the power curves are used to calculate the potential energy
production based on the wind speed probability distribution Pr as expected during
design. Therefore the potential energy production is calculated once based on the
measured power curve and once based on the warranted power curve. The first
one can represent the actual energy production, while the latter can represent the
ideal energy production. The third metric HIE gives the ratio between both, as
given by Equation 3.8.

HIE =

∑
i∈rangemeas

PA(i)+PA(i−1)
2 · Pr

(
V ∈ [VA (i− 1) ;VA (i)]

)
∑

i∈rangemeas

PW (i)+PW (i−1)
2 · Pr

(
V ∈ [VW (i− 1) ;VW (i)]

) (3.8)

The wind speed range for which both curves are compared is defined by the
wind speed range measured during the analyzed period (rangemeas).
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3.4.2 Farm-wide power curve monitoring

For this section the actual power curve of all turbines within the farm is calculated
based on 2 years of data as an illustration. The actual power curve is calculated
using the same filters as explained in Section 3.3. Once calculated the previously
defined health indicators are applied to spot any variations in the farm. These
results are provided in Figure 3.11.

As one can see in Figure 3.11, there is some variability in results. Based on
the difference in power (Figure 3.11a) several turbines pop up with issues such as
BBF05, BBA05, BBB02, BBA08, BBD06 and BBB10.

Thanks to HIarea (Figure 3.11b) turbines that perform better than expected
can be distinguished from those performing below the expected level. If the cal-
culated power curve exceeds the warranted power curve, HIarea will exceed 1
(indicated in green in the figure), while if the calculated power curve lies lower
than the warranted power curve, and the turbine is thus underperforming, HIarea
will be lower than 1 (in red in the figure). This is illustrated by Figure 3.10,
where the power curve of BBD06 exceeds the warranted power curve, BBF05 pro-
duced less power than guaranteed and BBA01 performed as expected. One of the
reasons for the difference between a calculated power curve and the warranted
power curve can be a defective anemometry [40]. When the anemometer underes-
timates the actual wind speed, the power curve is shifted to the left and an above
expected output is obtained. Oppositely when the wind speed is overestimated,
the power curve is shifted to the right which will be perceived as below expected
performance. Seeing the calculated power curve of turbine BBD06, a defective
anemometer might cause the apparent excellent power production as there are no
other mechanisms that would lead to a similar over-performance.

Looking at the results for HIE (Figure 3.11c), the same observations as for
the results of HIarea can be made. However, unlike HIarea, the resulting values
give an indication of over- or underproduction in terms of energy. For example,
BBB02 and BBD06 both seem to produce about 8% more energy than expected
with the warranted power curve. On the other hand, BBA05 and BBF05 seem to
produce about 8% less energy than expected.

Figure 3.10: Example of different power curves leading to different values for the
health indicators. One turbine with exceeding performance (BBD06), one with
normal performance (BBA01) and one with low performance (BBF05) is chosen.
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(a) Health indication based on the difference in power

(b) Health indication based on area under the curve

(c) Health indication based on potential energy

Figure 3.11: Resulting health indications for power curves calculated based on two
years of data.
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In some cases the health indicator based on the area HIarea and the energy
HIE show an excellent value of almost 1, while the health indicator based on the
power difference HI∆P is still a little higher than expected, for example for BBC01.
In this case the shape of the power curve changed slightly (Figure 3.12): for lower
wind speeds (under 10m/s) the calculated curve exceeds the warranted one, while
for the higher wind speeds (above 10m/s) the inverse is true. Although the effect
does not seem very severe, it can cause a lot of lost production over several months
depending on the actual wind conditions. If the wind speeds for which the actual
curve lies below the warranted curve often occur, a lot of production will be lost.
However, again an issue with the anemometer, i.e. an erroneous sensitivity, could
lead to this behavior.

Figure 3.12: Example of almost perfect power curve according to the area-based
health indicator, but not according to the health indicator based on the power
difference

3.4.3 Power curve monitoring over time

To see long term changes in power production under normal operation, a monthly
power curve can be calculated using data from the last month only. Again, the
same filters are applied as in Section 3.3.

Figure 3.13 shows the results for the area-based health indicator HIarea for
one turbine, BBF05, over a period of 4 years. One can observe a seasonal effect in
the results: the area under the measured power curve seems to be lower in spring
and summer, while it seems to increase during fall and early winter. Although
a correction of wind speed is done for seasonal effects (through the air density
correction explained in Section 3.2.2), this result suggests the correction suggested
in [44] is not sufficient as the performance is better in the cooler months with
denser air. However, it is shown atmospheric stability and turbulence influence
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the power production as well [50]. Therefore, the observed seasonal change can
also be the result of changing atmospheric conditions with different seasons.

Figure 3.13 also shows very low results for months of June and September in the
final year. The calculated power curves for these months are shown in Figure 3.14,
together with the calculated power curves of the months before, between and
after. It can be seen the power curves of June and September are clearly lower
than the power curves for the other months. No reason for this sudden reduction
in performance was identified.

Figure 3.13: Results for area-based health indicator for power curves calculated
each month during 4 years.

Figure 3.14: Calculated monthly power curves for BBF05, from the last May until
October
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Not only a seasonal effect is visible in Figure 3.13, a gradual decrease over time
of the area under the measured power curve is also clearly present. This behavior
hints at a gradual reduction of the turbine performance over time, e.g. as caused
by blade erosion. To compare this decrease to the change over time for the other
turbines within the farm, a linear regression model (HIarea(t) = Sarea · t + C) is
fit through the data. The resulting slope, Sarea of each linear model is plotted for
the whole farm in Figure 3.15.
The results in Figure 3.15 reveal that the gradual decrease over time was not
unique to BBF05 as several turbines in the farm show similar or worse behavior.

Figure 3.15: Resulting slope of linear regression model through area-based health
indicator results of monthly power curves for all turbines within the farm.

Figure 3.16 shows the monthly evolution of the health indicators HIarea, HI∆P
and HIE for monthly curves over four years for several turbines. The turbines were
selected based on their performance in Figure 3.15 ranging from the turbine with
the highest increase, BBC04, the turbine with strongest decrease, BBB10, and two
turbines that have intermediary results, BBE02 and BBD06.

First of all, one can notice the seasonal effect is not clearly present for all
turbines. For example turbine BBE02 has a steady behavior.

Furthermore, the low resulting slope of BBB10 can be explained by a sudden
increase for HI∆P (Figure 3.16b) and sudden drop for HIarea and HIE (Fig-
ures 3.16a and 3.16c) in July of the third year. Such a sudden, albeit smaller,
change can also be observed in April of the first year for BBE02. These changes
are probably caused by a reposition of the anemometer that measures the wind
speed. However, this is not confirmed with the maintenance records.

Finally, one can observe some sudden gains or drops for HIarea, and to a lesser
extend for HIE but no exceptional changes for HI∆P , for example in July of the
3rd year for BBD06. Figure 3.17 shows that the power curve of July and August
are very comparable. This explains the normal value for the health indicator based
on power difference. However the power curve of July contains three bins less than
the curve of August. Since these bins are all for wind speeds above rated power
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(a) Health indication based on area under the curve

(b) Health indication based on the difference in power

(c) Health indication based on the potential energy

Figure 3.16: Variation of health indicators in time for 4 different turbines
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and the turbine produces as expected from the warranty curve for those wind
speeds, the results for the area-based health indicator differ. In August, the good
behavior for lower wind speeds is compensated by those three bins leading to a
lower value for the area-based health indicator. The same effect influences the
results for the energy-based health indicator as well. However, to a lesser extend,
since higher wind speeds are less expected.
In case the measured power curve is lower than the warranty curve, the same
”lack” of presence of higher wind speeds can lead to lower values of the area-based
health indicator. This is also partly the reason for the two very low results in
Figure 3.13. In Figure 3.14, it can be seen that the highest wind speed measured
in June and September is between 16m/s and 17m/s, while for the other months
the wind speed easily exceeded 19m/s.

Figure 3.17: Monthly power curves of BBE06 for July and August in year 3. While
the power curves in August and July are nearly identical the area based indicator
was significantly larger for July due to less data in the upper wind speed ranges
in July.

Unfortunately these artificial changes in HIarea will (wrongly) influence the
results for Sarea as well. One could consider to do a similar analysis for HI∆P .
However, for power curves very close to the warranted power curve, the resulting
slope S∆P will not indicate the actual change over time of the power curve. More-
over, depending on whether the turbine is over- or underproducing, an increasing
power difference can be beneficial or disadvantageous. On top of that, similar
artificial changes in S∆P could occur.
A better solution might be to do the same analysis for HIE . Although these arti-
ficial changes will still influence the resulting slope SE , it will be less pronounced
than for Sarea.
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3.5 Rotor effective wind speed estimation

As mentioned in Section 3.4.2 and [40], defective anemometry or an unreliable
wind speed measurement can influence the power curves. [41, 42] point out the
higher uncertainties of the SCADA wind speed measurement.
To illustrate this, a dataset containing two months of data is used. This data
was filtered for four different sections of wind direction. For each wind sector, all
turbines of one string in the farm were outside the wake of the other turbines. To
make sure this was the case, each sector spanned 140 degrees. Moreover only data
points were considered for which all turbines were operational.

(a) Northern turbine string (b) Eastern turbine string

(c) Western turbine string (d) Southern turbine string

Figure 3.18: Wind speed measured by turbines in free wind, averaged over two
months of measuring for the free wind sector (blue full line) together with some 10
minute averages of wind speed as captured by the SCADA system (gray dashed
line). This is done for the northern (a), eastern (b), western (c) and southern (d)
of free wind turbines.

Since all turbines of that one string are out the wake of the others, one assumes
the 10 minute average SCADA value of wind speed for all time instances for those
turbines should be very similar. However the results shown in Figure 3.18 indi-
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cate differently. For each sector, 5 timestamps of ten minute averaged (free) wind
speeds as given by the SCADA system are shown in gray. One can see differences
up to more than 2 m/s. These differences are higher than expected for turbines
standing in free wind.
When looking at the overall average value for wind speed of all remaining data
points per turbine for each sector, it is expected the resulting averages are very
similar to each other. This resulting averaged wind speed of each turbine in a free
stream turbine string, based on the filtered data for each sector, is shown in blue
in Figure 3.18. One can see differences among the free turbines of more than 1
m/s for the averages over two months, which is not considered close to each other.
These results indicate the wind speed measurements by the anemometer of the
wind turbine are not reliable for all turbines.

To bypass the erroneous wind speed measurement, [41] suggests to calculate
the rotor effective wind speed, using Equation 3.9. This equation is based on
the one for power production (Equation 2.4) as introduced in Section 2.1.7. In
this equation the produced power P and the air density ρ are known from the
SCADA dataset and meteorological dataset. The rotor radius Rrotor is known to
be 45m for a Vestas V90 3MW turbine. To be able to calculate the rotor effective
wind speed Vrews, the power coefficient cP is needed as well. Basically, the power
coefficient gives an idea on how efficient the energy conversion actually is.

P =
1

2
ρcPπR

2
rotorV

3
rews (3.9)

One could choose to use the cP -curve as given by the manufacturer (Fig-
ure 3.19). However, in abnormal operation, e.g. during down-regulation, cP will
not follow this ideal curve, as a result the wind speeds will be estimated wrongly in
those cases. Therefore, numerous functions to estimate the cP are found in litera-
ture [31, 52, 53, 54, 55, 56]. In this thesis three different functions are considered.
For each function, different coefficients can be found. Two sets for each function
are applied.

cP (λ, θ) = c1

(
c2
λi
− c3θ − c4θc5 − c6

)
e

−c7
λi

λi =

(
1

λ+ c8θ
− c9
θ3 + 1

)−1 (3.10)

The first function (Equation 3.10), in the remainder of the section referred to
as F1, is suggested by [31, 52], using the blade pitch angle θ and the tip speed
ratio λ:

λ =
ΩRrotor
V

(3.11)

where Ω is rotor speed in radians/s, Rrotor is the rotor radius in meter and V
is the wind speed in m/s.
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Figure 3.19: Produced power (kW), power coefficient cP and thrust coefficient Ct
versus wind speed for a Vestas V90 3MW turbine [51]

Two different sets of coefficients are found in the aforementioned papers and
applied on the data. The coefficients used are given, along with their respective
sources, in Table 3.2.

The second function (referred to as F2) slightly differs, as suggested by [53, 54,
55, 56]:

cP (λ, θ) = c1

(
c2
λi
− c3θ − c4θc5 − c6

)
e

−c7
λi

λi =

(
1

λ+ c8
− c9
θ3 + 1

)−1 (3.12)

Again two different sets of values for the coefficients are found and applied
(Table 3.2).

The last and third function(referred to as F3) implemented for this thesis was
proposed by [57, 58, 59]:

cP (λ, θ) =
[
c1 − c2(θ − c3)

]
sin

(
π(λ+ c4)

c5 − c6(θ − c3)

)
− c7(θ − c3)(λ− c8) (3.13)

The two different sets of values for the coefficients applied here are again given
in Table 3.2.
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Table 3.2: Coefficient sets for multiple cP -functions from literature as applied on
available datasets.

F11 F12 F21 F22 F31 F32

Equation 3.10 3.10 3.12 3.12 3.13 3.13
c1 0,5 0,73 0,5 0,5 0,5 0,44
c2 116 151 116 98 0,00167 0,0167
c3 0,4 0,58 0,4 0,4 2 0
c4 0 0,002 0 0 0,1 -3
c5 1,5 2,14 1 1 12 15
c6 5 13,2 5 5 0,3 0,3
c7 21 18,4 21 16,5 0,00184 0,00184
c8 0,08 0,02 0,088 0,089 3 3
c9 0,035 0,003 0,035 0,035

Reference [31] [52] [53, 54] [55, 56] [57] [58, 59]

Since the tip speed ratio and thus cP depends on the wind speed, it is not
as straightforward to solve Equation 3.9 for the wind speed Vrews. To solve this,
the function given in Equation 3.14 is calculated for every timestamp i, where v
represents an array of possible values for wind speed between 0m/s and 30m/s,
with an accuracy of 0, 1m/s. The value for the rotor effective wind speed Vrews is
taken as the value of v such as f(Vrews) is zero. If multiple zeros occur, the closest
to the measured wind speed is taken. If no zeros occur, the value of v is taken
where the absolute value of f is minimum. This means that Equation 3.14 has to
be solved for each timestamp separately.

f(v) = P (i)− 1

2
ρcP (v,Ω(i), θ(i))πR2

rotorv
3 (3.14)

Since the calculation of rotor effective wind speed can only be accurate if the
turbine is producing power, it is only calculated for those data points for which
the measured produced power is greater than 0 kW during the full 10 minutes of
each data point. To illustrate, the proposed strategy is applied on a small period
for one turbine for all functions and coefficient sets.

Figure 3.20 shows the resulting rotor effective wind speed calculated using
Equation 3.10 for both sets of coefficients, F11 and F12 respectively. In Fig-
ure 3.20a one can see that the coefficients proposed in [31], F11 lead to an over-
estimation of the wind speed fairly often and that for some periods the estimated
wind speed stays almost constant. Figure 3.20b shows the overestimate by F11 is
mainly for pitch angles around 12◦. For larger pitch angles, the difference between
the estimated and the measured wind speed decreases fairly quickly. Moreover,
instability can be observed for pitch angles around -1, caused by values close to
zero in the denominator of Equation 3.10.
The coefficients proposed in [52], F12, never return a value for wind speed higher
than ca. 19m/s (Figure 3.20a). This is also represented by the decrease in differ-
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ence with the SCADA wind speed for pitch angles higher than 10◦ (Figure 3.20b).
Moreover, no valid estimations are found for pitch angles lower than 0, because
of the impossibility to calculate a fractional exponent of a negative base. Besides
those flaws the match seems rather nice.

(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.20: Rotor effective wind speed using Equation 3.10 compared to measured
wind speed by SCADA system
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Figure 3.21 shows the resulting rotor effective wind speed calculated using
Equation 3.12 for both sets of coefficients, F21 and F22 respectively. In Fig-
ure 3.21a one can see the use of the coefficients proposed in [53], F21 never gives
a value for wind speed higher than ca. 18m/s. Looking at Figure 3.21b, the dif-
ference with the measured wind speed is decreasing starting from a pitch angle of
0◦. Again, instability can be observed around a pitch of −1◦, caused by values
close to zero in the denominator of Equation 3.12.
Based on Figure 3.21 the agreement between the measured wind speed and the
rotor effective wind speed calculated using Equation 3.12 and the coefficients pro-
posed in [55], F22, seems to be fairly good with differences barely exceeding 3m/s.
However, instability is observed here as well for pitch angles around −1◦.

(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.21: Rotor effective wind speed using Equation 3.12 compared to measured
wind speed by SCADA system
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Finally, Figure 3.22 shows the results for the third function (Equation 3.13),
F3. For the coefficients suggested in [57], F31, a scaling problem seems to be
present (Figure 3.22a), which is represented by the decreasing line for the differ-
ence to the SCADA wind speed as well (Figure 3.22b).
The coefficients proposed by [58], F32, on the other hand, seem to have a disconti-
nuity around a pitch angle of 17◦. For greater pitch angles, which occur typically
for higher wind speeds, the estimated wind speed is well above the wind speed
recorded in the SCADA, leading to high differences as well.

(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.22: Rotor effective wind speed using Equation 3.13 compared to measured
wind speed by SCADA system
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From the results above it is clear that none of the proposed solutions in liter-
ature are adequate for the intented purpose. Rather than using pre-defined coef-
ficients, [41] proposes to obtain the actual coefficients by fitting the functions for
cP to the curve given in Figure 3.19. Unfortunately this is only possible when the
cP -curve is publicly available. The fitting is done using the standard multidimen-
sional unconstrained nonlinear minimization method of MATLAB, Nelder-Mead,
between the cP curve and the cP functions. To obtain the needed rotor speed
and pitch angle values for the cP functions, a rotor speed curve and a pitch angle
curve is calculated in the same way as the power curve in Section 3.3.1 using the
method of bins. These curves are shown in Figures 2.4 and 2.5. This standard
fitting method of MATLAB requires start values for the parameters to be opti-
mized. In this case, these parameters are the coefficients of the cP function. As
start values for the coefficients, the values from the literature given in Table 3.2
are used. This means each function is optimized twice, each time with a different
set of start values.
Moreover, to tackle the problems caused by negative pitch angles for the functions
given by Equations 3.10 and 3.12, a pitch offset with a starting value of 3 degrees
is introduced and fitted together with the coefficients.

Figure 3.23 shows the updated results using the fitted coefficients for the cP
function expressed by Equation 3.10 with an included offset for the pitch angle.
The errors between the predicted wind speed and those found in the SCADA shown
in Figure 3.23b are for both coefficient sets clearly lower than in Figure 3.20b. For
the first coefficient set (started from the values of [31]) F11,fitted, the high wind
speeds are a little bit overestimated, indicated by the increasing difference for
high pitch angles (Figure 3.23b) and seen in Figure 3.23a. In case of the second
coefficient set (started from the values given by [52]) F12,fitted, a clear decreasing
line for higher pitch angles is still present, indicating a topped estimation of wind
speed for higher wind speeds (as can be seen in Figure 3.23a for wind speeds above
ca. 22m/s).
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(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.23: Rotor effective wind speed using Equation 3.10, fitted coefficients and
an included pitch offset compared to measured wind speed by SCADA system
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Figure 3.24 shows the updated results using the fitted coefficients for the cP
function expressed by Equation 3.12 with an included offset for the pitch angle.
A very good agreement, with differences barely exceeding 2m/s, is found between
the SCADA wind speed and the wind speed estimation using Equation 3.12 with
the first fitted coefficient set (started from values given by [53, 54]) F21,fitted,
both in time series (Figure 3.24a) as in difference to SCADA (Figure 3.24b). For
the second fitted coefficient set (started from values of [55, 56]) F22,fitted, a good
agreement is found until pitch angles of ca. 14 degrees. For higher pitch angles
(and wind speeds) an overestimation is visible.

(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.24: Rotor effective wind speed using Equation 3.12, fitted coefficients and
an included pitch offset compared to measured wind speed by SCADA system
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Figure 3.25 shows the updated results using the fitted coefficients for the cP
function expressed by Equation 3.13. The estimated wind speeds clearly match
better to the measured SCADA wind speed with respect to Figure 3.22. For both
coefficient sets, an overestimation is seen for higher pitch angles, coinciding with
high wind speeds.

(a) SCADA wind speed and REWS vs time

(b) Difference between REWS and SCADA wind speed vs pitch angle

Figure 3.25: Rotor effective wind speed using Equation 3.13 and fitted coefficients
compared to measured wind speed by SCADA system
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The resulting values for the rotor effective wind speed, for each cP function
and each coefficient set, are now compared for free stream measurements only.
Figure 3.26 shows the calculated rotor effective wind speed for the same free turbine
strings and periods from Figure 3.18. One can see that the differences between
the rotor effective wind speeds are much lower than those between the measured
SCADA wind speeds. These results suggest the rotor effective wind speed can
definitely be a better estimation for the actual wind speed seen by the turbine.
However a comparison to an independent measurement such as a met mast is still
needed as confirmation. Unfortunately no such data is available for the considered
Belwind site.

(a) Northern turbine string (b) Eastern turbine string

(c) Western turbine string (d) Southern turbine string

Figure 3.26: Wind speed measured by turbines in free wind, averaged over two
months of measuring for the free wind sector (blue full line) together with the
calculated rotor effective wind speed, using three different functions with 2 fitted
coefficient sets each.

Multiple possibilities for a cP function can work out, the preference after the
obtained results in this thesis would be the function expressed by Equation 3.12
with the first set of fitted coefficients (started from the values given by [53, 54]),
F21,fitted , or the function expressed by Equation 3.13 with any of the two sets of
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fitted coefficients. F31,fitted and F32,fitted.
Given the impossibility to validate the results with an independent wind speed
measurement, it is chosen not to use the rotor effective wind speed in the remainder
of this thesis.

3.6 Conclusions

In this chapter 10min SCADA data was used for performance monitoring. Instead
of detecting instant and large anomalies in the performance, the aim was to detect
small performance changes over time. For that reason, power curves to represent
the normal operation of a turbine were calculated on a regular basis, using the
method of bins. This method was also compared to other univariate and multi-
variate techniques. Although multivariate techniques shown an improvement of
ca. 20% with respect to the method of bins, the latter was used for the perfor-
mance monitoring, as the benefits of simplicity and the low computational effort
outweighed the better results of multivariate techniques.
To monitor the performance, the calculated power curves are compared to the
warranted power curve based on three health indicators. By tracking the value of
those over time, seasonal effects and the general decline in performance of a tur-
bine could be detected. Moreover turbines within a farm can be compared to each
other based on those health indicators. In that way, under-performing turbines
can be identified and investigated. The general decline or increase in performance
over time is also compared on farm level.
An important dependency of the results on the quality of the wind speed mea-
surement is observed. Since the SCADA measurements tend to be unreliable, a
solution is suggested. The rotor effective wind speed is calculated using differ-
ent functions for the power coefficient. Results show the coefficients of these cP
functions should be fit to the cP curve given by the manufacturer in order to
obtain acceptable results. Moreover, for the functions defined in Equations 3.10
and 3.12 a pitch offset needs to be inserted to deal with mathematical instabili-
ties. Final results show potentially a more reliable wind speed estimation than the
measurements available in the SCADA system by using the concept of the rotor
effective wind speed. However, without an independent measurement of the free
wind speed, it is impossible to conclude this.
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Chapter 4

Thrust modeling

The majority of the work presented in this chapter has been published in [18].

A reliable load history is crucial for a fatigue assessment of wind turbines.
However, installing strain sensors on every wind turbine is economically not feasi-
ble. In this chapter, a technique is proposed to reconstruct the thrust load history of
a wind turbine based on high frequent SCADA data. Strain measurements recorded
during a short period of time are used to train a neural network. The selection
of appropriate input parameters is done based on Pearson correlation and mutual
information. Once the training is done, the model can be used to predict the thrust
load based on SCADA data only. Multiple alternatives of the same technique are
clarified and validated using 10 minute averages and mainly 1 second SCADA data
from both a real world turbine and simulation data (FAST). In general, the rel-
ative error between simulated/measured and predicted thrust load barely exceeds
20% under normal operating conditions. Furthermore, the model obtained for one
turbine is also applied on a different turbine of the same type to validate the trans-
ferability of the model to the rest of the wind farm. The cross validation resulted
in comparable results and is considered successful. Finally, some drawbacks of the
technique were illustrated by performing the technique on data of lesser quality.
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4.1 Introduction

Load estimation is an important part of a fatigue assessment. To have an idea
about the loads acting on an OWT, installing additional sensors is a common so-
lution. However, not all additional sensors stay reliable over time. For example,
strain sensors tend to drift in time. Moreover some data, e.g. SCADA data, is
already available and still underutilized. The research presented in this chapter
aims to replace the use of strain gauges for the estimation of quasi-static loads.
Existing approaches to estimate thrust loads are based on simulations and addi-
tional design information (e.g. thrust coefficient) or acceleration measurements
[29, 60].
Although SCADA data is available for every wind turbine by default, its possi-
bilities for load monitoring are still underutilized. Several authors [61, 62] have
suggested to use 10min SCADA statistics to estimate the loads on the blades. If
the estimated model uses SCADA data solely, it can be translated to every turbine
in the farm without the need of installing additional sensors. Recently, also the
use of 1s SCADA signals is becoming common practice in industry. Therefore the
use of (1s) SCADA data to estimate the thrust load, acting on the wind turbine
and its substructure, is proposed.
A correct estimation of the acting thrust load is not only of value in terms of
fatigue assessments. It is also possible to associate the thrust with properties of
wake flows. Therefore, an accurate estimation of thrust also proved important in
estimating wake wind speeds and turbulences [63].
Moreover, since the thrust coefficient and the power coefficient can be linked to
each other (as mentioned in Section 2.1.7), an accurate thrust estimation can also
help in improving, or facilitating if the cP -curve is not available, the calculation
of rotor effective wind speed (Section 3.5).

4.2 Available datasets

4.2.1 Monitoring setup

In this chapter, results are shown using measurements taken at an offshore wind
turbine. The monitored turbine is installed on a jacket and instrumented with
strain gauges at the interface between transition piece and tower (Figure 4.1b).

Although this chapter will focus on the estimation of the thrust load, additional
loads with higher frequencies are measured by the strain gauges as well. These
additional loads were introduced in Section 2.1.6. Figure 4.1ba shows the frequency
spectrum of measured bending moments, as induced by the thrust load and the
additional loads. The quasi-static contribution of the thrust load to the measured
bending moment Mtn,m is obtained by using a Butterworth filter of 4th order on
the recorded bending moments in a frequency range from 0Hz to 0, 2Hz. This
frequency band is defined in a way the filtered signal is not influenced by the first
natural frequency (0, 31Hz), since this is unrelated to any SCADA signal. The
final filtered signal is shown by the red solid line in Figure 4.1a. The filtered
signal represents the quasi static load and does no longer contain the effects of any
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(a) Frequency spectrum of measured tower bending moment in
fore-aft direction during 10 minutes (blue dashed line). The quasi-
static part of the bending moment is filtered out (red solid line).
The targeted quasi static load (filtered) does no longer contain
the effects of rotor harmonics.

(b) The strain
gauges are located
at the interface
between tower and
transition piece.

Figure 4.1: The measured thrust load Ft,m is obtained using the bending mo-
ment Mtn,m measured by strain gauges located at the interface between tower and
transition piece.

additional load.
The resulting signal is then transformed into thrust load FT,m, using the distance
between the sensors (= location of the measured bending moment) and the hub (=
location of acting thrust force) [63]. To match the time-steps of the SCADA data,
the obtained thrust load is down-sampled using an anti-aliasing filter to a time
frame of 1 second and additionally averaged over 10 minutes. As the turbine is
installed on a jacket, the role of wave loading in the quasi static bending moment
is assumed to be negligible.

4.2.2 SCADA data

For this research, SCADA data is utilized, both the 10min averages as the 1s data,
i.e. data sampled at 1Hz. In this case, the preprocessing and filtering process for
the SCADA data consisted in exclusion of improbable and unrealistic values for
wind speed (outside interval [0; 50]m/s) and for generated power (outside interval
[−0, 1; 1, 25]·Prated) and periods of constant wind speed from the dataset. In total,
only 0, 02% of the total dataset is removed.
For this research a subset of one year and three months of both 10min statistics and
1Hz signals of SCADA data was available. The subset consisted in both cases of
measurements for wind speed, rotor speed, generated power, blade pitch angle and
yaw angle. The subset of 10min statistics additionally contained measurements of
wind direction and ambient (air) temperature.
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(a) Produced power vs wind speed (b) Measured thrust load vs wind speed

(c) Measured thrust load vs produced
power

Figure 4.2: Characteristic curves for power output and load obtained using
SCADA data in combination with averages of thrust load measurements. Op-
erational data for a period of 2,5 months is shown. Data in both 10 minute time
frame (purple) and 1 second time frame (blue) is shown. The line indicates the
median value, calculated per bin of 0, 5m/s or 100kW , whereas the surface spans
the 5th to 95th percentile of the data. Rated power is reached for wind speeds of
approximately 13m/s (indicated by the green dashed line).

Figure 4.2a shows the power curves obtained with both the 1s and 10min
SCADA, respectively in blue and purple, for a period of 2,5 months. The lines
indicate the median value of the dataset, while the surface spans the 5th to 95th
percentile of the data. The median values of both datasets usually coincide quite
nicely. A higher difference in spread of the data however is observed, since the
blue surface is much bigger than the purple surface. The power curve generated
using the 1s SCADA thus shows a much larger variability in power compared to
the 10min averaged SCADA. The same difference in variability can be observed
in Figure 4.2b and 4.2c, where 1s and 10min averages of measured thrust load are
plotted versus 1s and 10min SCADA wind speed and generated power respectively.
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The present variability in 1s data is not only the result of noise, but is mainly due
to the inertias within the controlling system and the wind turbine. For example,
when the wind speed increases, the power output increases only a few seconds after
(Figure 4.3). These inertias result in time delays up to several seconds between
e.g. the wind speed and the generated power. These delays are not considered
constant over time and will differ for every SCADA parameter. Moreover, they
last for only a couple of seconds and in consequence they can not be observed
within 10 minute averages. Although the variability obtained using 10min data
is far less compared to 1s data, it is still existent. This variability in the data
was the reason for which better results were obtained for multivariate power curve
modeling techniques compared to univariate modeling techniques in Section 3.3.2.
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Figure 4.3: Wind speed signal and power signal as captured by the SCADA system.
An inertia of the power signal with respect to the wind speed signal is visible, as
power output only peaks at around 65s while the wind speed had peaked about
15s earlier.

4.2.3 Meteorological data

Measurements of air pressure are available from a nearby met mast (15km). Using
the ambient temperature, contained in the considered SCADA dataset, the air
density is calculated using Equation 3.2.

4.3 Input parameter selection

4.3.1 SCADA data

According to [29], it is possible to calculate the thrust load FT with Equation 4.1,
where ρ is the air density, V the wind speed, Rrotor the rotor radius, cT the thrust
coefficient, θ the blade pitch angle and Ω the rotor speed.

FT =
1

2
ρV 2πR2

rotorcT (θ, V,Ω) (4.1)

In this equation, all parameters are measured by the SCADA system except for the
air density and the thrust coefficient cT . The influence of air density is commented
on later in Section 4.3.2. The thrust coefficient depends on the design of the turbine
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and is considered to be dependent on the blade pitch angle and the tip speed ratio
[29]. Since the tip speed ratio can be calculated using the wind speed and the
rotor speed, the thrust coefficient should be dependent on SCADA parameters
only: blade pitch angle, wind speed and rotor speed. Hence a model to estimate
the thrust load can be created based on SCADA data. In this chapter, a data-
driven model will be created, which will approximate the model given by Equation
(4.1). Once such a model is found, it should be valid for every turbine of the same
type and hopefully can be transferred to all wind turbines in the farm.

Figure 4.4 shows a couple of time series of measured thrust loads together with
the same 1s time series of a SCADA parameter: wind speed (4.4a), generated
power (4.4b) and blade pitch angle, the additive inversed, (4.4c). These time
series do not represent the same operational conditions, but are chosen in such a
way the different dependencies of thrust load can be visualized. A clear match
between the signals can be seen. This intuitively confirms the idea to model the
thrust load based on SCADA data.

A crucial part in the model creation is the parameter selection. Input param-
eters are chosen from the SCADA dataset based on their Pearson correlation and
mutual information to the thrust load.

Pearson correlation

A common practice to select input variables is by calculating the Pearson cor-
relation R(X,Y ) between the possible input parameters and the given output
parameter. The Pearson correlation between two signals X and Y , both with n
time instances, is calculated using Equation 4.2, in which X̄ is the mean value of
the signal X and similar for Ȳ [64].

R(X,Y ) =

n∑
i=1

(
X(i)− X̄

)(
Y (i)− Ȳ

)
√

n∑
i=1

(
X(i)− X̄

)2 n∑
i=1

(
Y (i)− Ȳ

)2
(4.2)

The calculation of Pearson correlation is done for data during different operat-
ing states. Both 1s data and 10min data for a period of 2,5 months is used. A first
dataset contained all data points for which the turbine was generating. During this
period the full wind speed range is covered, as shown by Figure 4.2. Additionally,
the generating data sets are divided into two subsets: data when the turbine was
generating below rated power (64 % of 10min and 62 % of 1s operational data)
and at rated power (36 % of 10min and 38 % of 1s operational data). The dis-
tinction between below and at rated power is made based on the value for power
(below or over 95% of rated power as given by the manufacturer). Moreover, the
correlation is calculated for a fourth dataset, where the turbine was not generating.
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(a) Thrust load time series compared to 1s SCADA wind speed time series
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(b) Thrust load time series compared to 1s SCADA power time series
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(c) Thrust load time series compared to 1s SCADA pitch angle time series (additive
inversed)

Figure 4.4: A good match is found between time series of measured thrust loads
and time series of SCADA parameters (1s). The shown time series all represent
different time instances and do not necessarily have the same lengths.
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Results for all different datasets and all parameters of interest from the SCADA
are given in Figure 4.5. For the wind direction, no 1s dataset is available. Therefore
only results for 10min data are shown.

Figure 4.5: Pearson Correlation between measured thrust load and several
SCADA, calculated for 10min and 1s dataset.

Behavior during generating Focusing first on the results for the total gener-
ating data set, a high Pearson correlation can be found for rotor speed (0,8871 and
0,8935 for 10min and 1s data respectively), generated power (0,7513 and 0,7497)
and to a lesser extent wind speed (0,5082 and 0,4829).
In case of the generating data below rated power, the resulting values are even
higher for rotor speed (0,9383 and 0,9622), power (0,9396 and 0,9603) and wind
speed (0,9417 and 0,9086).
In contrast, generating data at rated power reveals a high Pearson correlation of
the blade pitch angle (0,9499 and 0,9298) and wind speed (0,8898 and 0,8194).
This difference in behavior is explained as follows. Once the turbine reached its
rated power value, the only parameter acting to varying wind speed and thrust
load will be the blade pitch angle. Hence a significant lower correlation for the
rotor speed (0,1562 and 0,1385) is found. However generated power is still cor-
related to thrust load with a significant value (0,6354 and 0,2915). Figure 4.2c
reveals a very steep curve between thrust and generated power once rated power
is reached.
In the results of Pearson correlation (Figure 4.5) negative values are the result of
an additive inversed relationship between the depicted parameter and the thrust
load. For a turbine generating below rated power, a higher wind speed results in a
slightly lower blade pitch angle and an increased thrust load. Therefore a decreas-
ing blade pitch angle (due to an increase in wind speed) leads to a higher thrust
load. Hence, a negative value for Pearson correlation between pitch angle and
thrust load when the turbine is generating below rated power is expected. Once
rated power is reached, increasing wind speeds result in higher blade pitch angles,
slightly increasing generated power and decreasing thrust loads (Figure 4.2b). Ac-
cordingly an increase in blade pitch angle and generated power (thanks to an
increase in wind speed) enforces a decrease in thrust load. And thus, a resulting
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negative Pearson correlation between thrust load and wind speed, generated power
and pitch angle for generating data at rated power is consistent.
It is obvious the turbine reacts differently to varying wind speeds depending on the
operating state. Once rated power is reached, the relation of the thrust load to the
depicted SCADA parameters often differs. This leads to lower correlation values
for the total generating dataset in comparison to the generating states separately.
In case of the pitch angle, the correlation even is non-existing when looking at the
total operational dataset.

Behavior in non generating state When looking at the results for the non-
generating dataset, a high correlation is found for the rotor speed (0,8534 and
0,8773 for 10min data and 1s data respectively). This can be explained using
Figure 4.6b, where one can see a clear (linear) correlation between thrust load and
low rotor speeds up to 8rpm. Striking is the existence of data points for which the
rotor speed is not equal to zero, although the data set was filtered to contain only
data for which the turbine was not generating. As long as the turbine is slowing
down or speeding up from/to 8 rpm for any reason (e.g. rotor stop, too low wind,
cut-out) the turbine is not producing power. It starts producing power once the
rotor speed reached 8 rpm. This change in rotor speed is actually triggered by
a changing blade pitch angle, as shown in Figure 4.6d. This also explains the
significant correlation between the measured thrust load and the blade pitch angle
(0,52 and 0,6399 for 10min and 1s data respectively), as can be seen in Figure 4.6a
too. It can be seen that, the more the turbine is slowing down, the greater the
pitch angle becomes, therefore the lower the thrust load is.
The moment the turbine stops producing energy, but is still rotating, it consumes
the highest amount of energy (Figure 4.6e) and thus the most negative values for
generated power are measured. The more the turbine slows down, the lower the
thrust load is and the less energy it consumes (thus the generated power increases
but stays negative). This relation between thrust load and generated power can
be seen in Figure 4.6c and in the significant value for Pearson correlation (0,3953
and 0,3827 for 10min and 1s data respectively) as well.
Results in Figure 4.6 show that for pitch angles greater than 40 degrees, the 10
minute data actually contains the transition from non-generating to generating
or vice versa. This means that the turbine shut down or started during the 10
minutes of which the averages values are considered as not operational. Therefore,
the correlation results based on 10min averages are less reliable, for these particular
points.
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(a) Measured thrust load vs blade pitch an-
gle

(b) Measured thrust load vs rotor speed

(c) Measured thrust load vs generated
power

(d) Rotor speed vs blade pitch angle

(e) Generated power vs rotor speed

Figure 4.6: Characteristic curves obtained using SCADA data in combination with
averages of thrust load measurements. Only non-generating data, i.e. without
power production, during a period of 2,5 months is shown. Data in both 10 minute
time frame (blue) and 1 second time frame (purple) is shown. The line indicates
the median value, calculated per bin, whereas the surface spans from the 5th to
the 95th percentile of the data.
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Mutual information

The Pearson correlation studied in the previous section evaluates the existence of
a linear relationship between two parameters. However, the problem we are facing
is not necessarily linear. As such an analysis to identify and quantify possible
chaotic or non-linear dependence is performed as well. A relevant metric is mutual
information, a measure of dependence based on information theory and the notion
of entropy. The mutual information I(X;Y ) between two signals X and Y is
determined by equation 4.3[65], or discretized by equation 4.4[66].

I(X;Y ) =

∫ ∫
µX,Y (x, y)log

µX,Y (x, y)

µX(x)µY (y)
dxdy (4.3)

I(X;Y ) =
∑
x∈X

∑
y∈Y

h(x, y)log
h(x, y)

f(x)g(y)
(4.4)

To calculate the mutual information, the continuous probability density func-
tions (pdf) µX(x), µY (y) and µX,Y (x, y) or the discretized functions f(x), g(y)
and h(x, y) are used. To obtain these pdf estimations, both kernel or histogram
based estimations are commonly used. Unfortunately, the kernel based calculation
of mutual information for continuous variables requires too much computational
effort for the considered amounts of data. Therefore only the histogram based
estimation for discretized functions is implemented.

To obtain the discretized pdf estimations, a histogram based estimation as
explained by [67], is implemented. To estimate the joint density h(x, y), a bi-

dimensional histogram ĥk,j(1 ≤ k ≤ m, 1 ≤ j ≤ m) is created. The idea is to
build a set of rectangular tiles spanning the area created by the ranges of both
signals. After which the number of pairs (x, y) falling into each tile (Equation 4.5)
are counted.

ĥk,j = #{(x, y) | ak ≤ x ≤ ak+1 and bj ≤ y ≤ bj+1} (4.5)

The size of the tiles is defined by using Equation 4.6, with the interquartile
range of the data IQR and the number of data points N , as suggested by [68].

TileSize = 2 · IQR ·N− 1
3 (4.6)

The resulting histogram ĥk,j can be used to estimate h(x, y). Moreover f(x)
and g(y) can be estimated from the bi-dimensional histogram as well:

f̂k =
∑
j

ĥk,j (4.7)

ĝj =
∑
k

ĥk,j (4.8)
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Eventually, the mutual information can be calculated from:

Î(X;Y ) =
∑
k,j

ĥk,j · log
ĥk,j

f̂kĝj
(4.9)

Opposed to Pearson correlation coefficients, mutual information doesn’t have a
general maximum value indicating perfect dependence between two signals. There-
fore the resulting mutual information should be normalized first. Multiple possi-
bilities are found in literature. Four of them are applied and compared here. For
these normalization, often the entropy of a signal is used. Therefore, Equation 4.10
defines entropy H(X) for a signal X and Equation 4.11 gives the joint entropy
H(X,Y ) for two signals X and Y .

H(X) = −
∑
x∈X

f(x)logf(x) (4.10)

H(X,Y ) = −
∑
x∈X

∑
y∈Y

h(x, y)logh(x, y) (4.11)

The first one utilizes the entropy of the signals separately (Equation 4.12) [69].

Inormalized(X;Y ) =
2I(X,Y )

H(X) +H(Y )
(4.12)

For the second one, normalization is done by dividing by the joint entropy
H(X,Y) of the two signals [70], as indicated by Equation 4.13.

Inormalized(X;Y ) =
I(X,Y )

H(X,Y )
(4.13)

A third method to normalize takes the maximum of the entropies of both
signals as a reference (Equation 4.14)[71].

Inormalized(X;Y ) =
I(X,Y )

max(H(X), H(Y ))
(4.14)

A last suggestion for normalization doesn’t need the mutual information cal-
culation at all, as seen in Equation 4.15[72].

Inormalized(X;Y ) =
H(X) +H(Y )

H(X,Y )
(4.15)

Mutual information is calculated for the same period and datasets as Pear-
son correlation. The resulting mutual information between the measured thrust
load and several SCADA parameters for all 10 minute data sets is depicted in
Figure 4.7 for all normalization methods. Similar results are found for all normal-
ization methods, although for the fourth (Equation 4.15) the reference value for
no correlation is 1 instead of 0 as is the case for the other normalization techniques.
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(a) Normalization method given by Equation 4.12
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(b) Normalization method given by Equation 4.13
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(c) Normalization method given by Equation 4.14
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(d) Normalization method given by Equation 4.15

Figure 4.7: The mutual information is calculated between thrust load averages and
several SCADA parameters for four different datasets. Four different normalization
methods are compared based on results for 10min averages only.

Because little difference is found among these normalization methods only one
normalization method is applied on the 1s dataset. Only the normalization given
by Equation 4.13 was performed. The results for both 1s and 10min data is given
in Figure 4.8.
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Figure 4.8: Mutual information between measured thrust load and several SCADA,
calculated for 10min and 1s dataset.

Behavior in generating conditions When looking at the results of mutual
information for the total generating data sets, the highest dependencies are again
found for wind speed (0,3934 and 0,1068 for 10min and 1s data respectively),
generated power (0,3453 and 0,1904) and rotor speed (0,2888 and 0,1217). Inter-
estingly, also a relatively high value is found for the blade pitch angle (0,233 and
0,1186). When taking into account the existing non linearities, as done by mutual
information, the blade pitch angle is clearly correlated with the thrust load based
on the total generating dataset as well.
In case of the generating data below rated power, the values for mutual informa-
tion are even higher for power (0,5158 and 0,2811), rotor speed (0,466 and 0,2161)
and wind speed (0,4342 and 0,1057). Here, the values for mutual information of
the pitch angle decreased to 0,2075 and 0,1103 for the 10min and 1s dataset re-
spectively.
On the contrary, generating data at rated power reveals a high value for mutual
information for the blade pitch angle (0,4492 and 0,1268) and for the wind speed
(0,3804 and 0,07928). Again, this is because of the pitch action of the controller
once rated power is reached. Also, a significant lower value for mutual informa-
tion for the rotor speed (0,0333 and 0,0098) is found. Such as seen for the Pearson
correlation, the value for mutual information of generated power in case of 10min
data is significantly higher as well (0,1308).

Behavior in non-generating conditions Looking at the non-generating dataset,
values for mutual information are significantly lower than for the other datasets.
Again, rotor speed (0,1814 and 0,08987 for 10min and 1s data respectively), pitch
angle (0,1697 and 0,1119) and generated power (0,1447 and 0,05072) can be con-
sidered as influencing parameters. In contrast to the results of Pearson correlation,
the yaw angle has a high value for mutual information (0,1573 and 0,2219).
Figure 4.9 shows a clear non-linear relation between the median value of measured
thrust and the measured yaw angle. This can be explained by the transforma-
tion of strain measurements to fore-aft and side-side bending moments. When the
transformation done here is not according to the actual wind direction, a depen-
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Figure 4.9: Measured thrust load vs SCADA yaw angle for non-generating 10min
and 1s data

dency on the yaw angle can be found. When the turbine is not operating, it is
often not rotated in the actual wind direction. The transformation is based on the
measured yaw angle. Therefore the transformation can be inaccurate in case the
turbine is not operating.

For the continuation of this research, all SCADA parameters except for the
yaw angle will be considered as an input parameter. The yaw angle is not selected
due to its small correlation for the total generating dataset (0,0598 and 0,0596 for
10min and 1s data respectively, Figure 4.5) and mutual information (0,0403 and
0,0367 for 10min and 1s dataset respectively, Figure 4.8) with the thrust load.

Analysis of time lags between 1s SCADA parameters

For all four considered subsets in Figure 4.8 the values for mutual information
are less for 1s SCADA over the results for the 10 minutes averages. This can be
explained by the time delays of several seconds between different parameters, as
a result of the inertias present within the system. In this section an additional
analysis is done to see the effect of including a time lag between signals.

A time lag between the different SCADA signals and the thrust load could
already be observed in Figure 4.4. This time lag is not constant over time and
differs for every SCADA parameter, this behavior excludes a fixed time delay
between the load-monitoring system and the SCADA system. A more likely cause
for the observed time delays are the inertias within the controlling system and the
wind turbine. The existence of these inertias is confirmed in [60]. Due to these
inertias, the Pearson correlation and mutual information based on the 1s SCADA
data can be recalculated, including different values for a time lag.
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Figure 4.10: Correlation analyses for different SCADA signals and different
datasets (based on operational status of the turbine) including different time lags

Figure 4.10 shows the resulting values for Pearson Correlation and mutual
information for time lags from -15 to 15 seconds. Negative time lags indicate
that the thrust signal is lagging behind the SCADA signal, positive time lags the
other way around. In general, a bigger influence of a possible time lag is found
for mutual information than for Pearson correlation. In Figure 4.10a very little
difference is found for almost all signals and all different datasets, except for the
rotor speed and generated power at rated power. Here, the SCADA signals are
not dominated by big, very low frequent oscillations. Therefore the correlation is
based on the existing small but relatively high frequent oscillations with a period
of a couple of seconds and thus more influenced by the introduction of a time lag.

Table 4.1 shows the time lag for which the correlation or mutual information
was highest for every parameter and every dataset. When a value is missing, no
maximum was found. In general, the thrust signal is not lagging more than 5
seconds behind any SCADA parameter. These results indicate the thrust load
a turbine is subjected to at a certain timestamp can be induced by a SCADA
parameter as measured a few seconds (up to 5) ago. Therefore it is concluded that
if the thrust load is estimated based on 1s data, not only the instantaneous values
for all SCADA parameters will be considered but also those up to 5s before.
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Table 4.1: Ideal time lag, in seconds, found for different SCADA signals and
different datasets

(a) Pearson Correlation

V θ P Ω
All generating 1 / 0 1
Below rated power -2 0 -1 0
At rated power -4 -3 -4 2
Not generating -1 1 / 12

(b) Mutual Information

V θ P Ω
All generating -3 -3 0 3
Below rated power -1 4 0 4
At rated power -4 -3 -4 1
Not generating 0 -3 0 /

4.3.2 Meteorological data

According to [29], thrust loads are greatly influenced by air density. This comes
to no surprise as results in Section 3.2.2 already introduced a density-correct wind
speed to account for the strong relation between air density and the power pro-
duction. However, while changes in the depicted SCADA variables happen within
seconds, air density changes on a different time scale of several hours. Because
of this slow behavior including air density into the set of input parameters for
training the model implies that long-term data is needed to train the 1s SCADA
model. Instead the effect of air density is accounted for as a correction of the
modeled thrust load F̂T . Equation 4.1 and [29] shows a linear correlation between
air density and the thrust load. Therefore Equation 4.16 is proposed to perform
an air density correction on the modeled thrust load.

F̂T,corr = ρF̂T (4.16)

4.4 Modeling technique

Seeing the relation between thrust load and the depicted SCADA parameters is
non-linear, a model will be created using a neural network and the Neural Network
toolbox of MATLAB. A neural network is capable of finding and characterizing
non-linear dependencies within datasets. Therefore it can handle the inverted
relations between thrust load and the considered SCADA parameters once rated
power is reached. The neural network used in this section has 3 hidden layers with
4 neurons each, as shown in Figure 4.11.
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Figure 4.11: Schematic visualization of chosen neural network topography.

The network is trained using all data remaining after the preprocessing and
filtering process explained in Section 4.2.2. The training data consisted of 1s or
10min SCADA data and the corresponding 1s or 10min averages of thrust load
measurements (FT,m training). As explained in Section 4.3.2, the effect of air den-
sity is accounted for by applying a correction on the model results. To make sure
the effect of air density is not present in the training data, the inversed correction is
applied on the measured thrust loads of the training dataset: FT,m training =

FT,m
ρ

From the conclusions of Section 4.3 the following input parameters were chosen
for the model: wind speed, blade pitch angle, rotor speed and generated power.

The modeling technique will be performed using 10min averages and 1s data.
To account for the inertias in the system visible in 1s data, not only instantaneous
SCADA values, but also the values of 5 previous seconds are given as input for a
model trained based on 1s data.

Since the model will be used in every operating state of the wind turbine, it is
important the full operational wind speed band is covered in the training data set.
For every operating state, e.g. during a down-rating or curtailment, that is not
represented in the training data, the model will probably not be able to predict
the thrust load correctly.
To train the neural network, the Neural Network toolbox of MATLAB is used
with the default settings [73]. This means the preprocessing is done by a min-
max mapping function, tan-sigmoid transfer functions are used for hidden layers
and a linear transfer function is used for the output layer. Furthermore the data
chosen to train the model is randomly divided into 70 % of training data, 15 % of
validation data and 15 % of test data. This so-called hold-out method is preferred
over cross-validation to reduce the computational load, since large datasets are
used. Training is done using the training data and the Levenberg-Marquardt
algorithm. Training of the network is stopped when the error on the validation
data failed to decrease for 6 iterations or a maximum number of 1000 iterations is
reached. The test data is used as an independent dataset of the network training,
to calculate the final model error.
For all models created and validated in the remaining of this section, the measured
thrust load FT,m is compared to the modeled thrust load F̂T . This is done in
absolute terms, but also by using the relative error between both, obtained by
Equation 4.17.

∆ε =
abs(FT,m − F̂T )

FT,m
(4.17)
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4.4.1 Model based on 10min data

Firstly, the thrust load is modeled using the 10 minute average SCADA data and
10 minute average load measurements. The 10min averages could be preferred
over 1s data because less data is needed to cover the entire wind speed and a wide
meteorological range. This reduced amount of data inherently reduces the time to
train the model significantly.

The training of the model is done based on a dataset of 2 weeks. This training
dataset was chosen carefully to make sure the entire wind speed range was covered,
as is shown in Figure 4.12a. Moreover, it was chosen to keep the training period
as short as possible for multiple reasons. First of all, the computational time
for a shorter period is significantly lower. Furthermore, the shorter the needed
training period, the faster the application of the model can be used for future
applications. However it is very important the full wind speed range is covered
during the training period. This means for future applications, that might be the
main driver to define the training period.

(a) Modeled and measured thrust loads for
the total dataset of 2 weeks during the
training phase, including training, valida-
tion and test set

(b) The absolute relative error for the dif-
ferent datasets during the training phase

Figure 4.12: Results based on 10 minute averages of SCADA parameters and
measured strains for the dataset used during the training phase. The lines indicate
median values for every wind speed bin of 0, 5m/s; the surface spans from the 5th
to the 95th percentile of the data. For the thrust curve, two datasets are considered
for each wind speed bin. One for high thrust loads and one for low thrust load
(the limit is ca 5% of the maximum thrust).

Figure 4.12 shows the results of the training phase. Figure 4.12a shows the
measured and modeled thrust load for the 10 minute averages. A good agreement
is found over the entire wind speed range, for both operational and not operational
data. Figure 4.12b shows the relative absolute error for the training, validation
and test set during the training phase. Median errors of over 20% are found for low
wind speed, mainly caused by the low absolute value of the measured thrust load.
During operating conditions for wind speeds higher than 7 m/s, the relative error
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stays under 5%. A similar behavior for the three datasets is found under operating
conditions, indicating the training set was representative for the validation and test
set.

Applied on 10min data

This found model is extensively validated on a dataset containing one year of 10
minute averages. The training data of 2 weeks is not included in this validation
data. Figure 4.13 shows the results of this validation. Figure 4.13a shows a good
agreement between measured and modeled thrust load over the entire wind speed
range. Figure 4.13b shows a similar relative error under operating conditions for
wind speeds higher than 8m/s. For low wind speeds, relative errors are higher
and more inconsistent due to the low value of the measured thrust load. Less
importance is given to the low values of thrust load, because other loads acting on
the structure are dominant in that case.

(a) Modeled and measured thrust loads for
the total validation dataset of one year

(b) The absolute relative error for the vali-
dation dataset of one year and the test set
during the training phase

Figure 4.13: Results based on 10 minute averages of SCADA parameters and
measured strains for the validation set of one year. The lines indicate median
values for every wind speed bin of 0, 5m/s; the surface spans from the 5th to the
95th percentile of the data. For the thrust curve, two datasets are considered for
each wind speed bin. One for high thrust loads and one for low thrust load (the
limit is ca 5% of the maximum thrust).

Applied on 1s data

To cover all relevant fatigue cycles over the lifetime of the wind turbine the load
modeling will have to be performed at a higher rate than once every ten minutes.
At this point it is still uncertain whether the ten-minute model can be combined
with the 1s SCADA to obtain a sufficiently accurate model of the thrust loading.
Therefore 1s data is used as an input for the model that was trained with 10 minute



4.4. Modeling technique 83

(a) Modeled and measured thrust loads for
the total validation dataset of one year

(b) The absolute relative error for the vali-
dation dataset of one year and the test set
during the training phase

Figure 4.14: Results based on using 1s data of SCADA parameters as the model-
input and measured strains for one year. The model was trained based on 10
minute averages of SCADA data and measured strains of 2 weeks. The lines
indicate median values for every wind speed bin of 0, 5m/s; the surface spans from
the 5th to the 95th percentile of the data. For the thrust curve, two datasets are
considered for each wind speed bin. One for high thrust loads and one for low
thrust load (the limit is ca 5% of the maximum thrust).

averages of data. Again, a validation period of one year is chosen. Figure 4.14
shows the results.

A good agreement in the general behavior between modeled and measured
thrust load is found for operating conditions up to wind speeds of 20m/s (Fig-
ure 4.14a). Also for parked conditions a fairly good agreement is found. However
close to cut-out wind speed (around 25m/s), an increasing difference between mea-
sured and modeled thrust load is observed for operating conditions. This is also
represented by the relative error (Figure 4.14b). The median error and the surface
clearly increase for increasing wind speeds from 15m/s. Moreover, higher errors
are again observed for very low wind speeds, due to the low absolute value of thrust
loads. Finally, one can see that the surface spanning the 5th to the 95th percentile
of the measured data is bigger in general compared to the results of 10min data
(Figure 4.13b). This can be easily explained by the difference in variability in both
datasets, as was already explained in Section 4.2.2 and by Figure 4.2.
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(c) Below rated power. MRE = 11,7%
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(e) At rated power. MRE = 4,23%
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(f) At rated power. MRE = 10,1%

Figure 4.15: Time series (spanning 10 minutes) of modeled and measured thrust
loads for not generating (a,b), below rated power (c,d) and at rated power (e,f).
For each operational state, the time series with the highest averaged absolute error
is shown (b,d,f). MRE shows the averaged absolute relative error over 10 minutes.
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Six time series spanning 10 minutes during the validation phase are shown in
Figure 4.15, two when the turbine is not generating (Figures 4.15a and 4.15b), two
while operating below rated power (Figures 4.15c and 4.15d) and two while oper-
ating at rated power (Figures 4.15e and 4.15f). The time series of 10 minutes with
the highest averaged absolute error between measured and modeled thrust loads
while not generating, operating below rated power and operating at rated power
are shown in Figure 4.15b, Figure 4.15d and Figure 4.15f respectively. Almost all
time series show an offset, being a significant difference between the mean value
of both signals. The modeled signal in Figures 4.15a, 4.15b and 4.15f shows more
variations than the measured signal. These are probably caused by variations in
wind speed. This indicates the model is too influenced by the variations in SCADA
signals such as wind speed. On the other hand, the model clearly missed some
variations in Figure 4.15d. It was observed the variation in measured thrust load
was mainly induced by a varying pitch angle. Thus, one could conclude the model
is too much influenced by variations in wind speed and too little by variations in
pitch angle. This over- or under-sensitivity to specific SCADA parameters can
be caused by the use of 10 minute averages to train and 1s data as input to the
model. For example, little variations in pitch angle can cause little variations in
thrust load. However, when looking at the 10 minute averages of the pitch angle,
these little variations are non-existent.
Finally, in case of rated power conditions, the model is not always capable of fully
capturing the amplitudes of all cycles, as can be seen in Figure 4.15e.
For these reasons it is not recommended to train a thrust load model, intended
for fatigue life estimation, based on 10 minute averages. An alternative is to train
the model with 1s data instead of 10 minute averages.

4.4.2 Model based on 1s data

The modeling method proposed in Section 4.4 is also validated when trained using
1s data. For this purpose two different datasets of 1s data are considered. The
first data is obtained by simulation in FAST in order to obtain a fully controlled
and reproducible dataset. The second dataset is obtained from a measurement
campaign performed at an offshore wind turbine (as explained in Section 4.2).

Simulated data

The simulated data is obtained by using the software FAST v8 [74], offered by
NREL. The chosen simulated turbine is the NREL 5,0 MW Baseline Wind Turbine,
installed on an OC3 Monopile RF configuration. All simulation specifications are
kept as proposed by the software [74] for use of this turbine type. This means that
turbulence and irregular waves are also accounted for. To make sure the full wind
speed range is sufficiently covered in the simulation data, several input wind files
with varying average wind speed between 3m/s and 25m/s are generated using
TurbSim. Each wind speed is accounted for equally. In essence, the wind speed
distribution is thus considered as uniform.
The output parameters of interest for this research are specified in Table 4.2.
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As the results obtained using simulated data will serve to validate a real-world
methodology, only parameters for the SCADA data and the measured bending
moment whom are available in the real-world are considered.
During these simulations the air density was kept constant. Therefore the applied
corrections for air density did not influence the results.

Table 4.2: The selected output variables for FAST simulations

Parameter Category Description Unit
Wind1VelX InflowWind Nominally downwind component

of the hub-height wind velocity
m/s

BldPitch1 ElastoDyn -
Blade Pitch
Motions

Blade pitch angle (position) deg

LSSGagVxa ElastoDyn -
Shaft Motions

Low-speed shaft strain gage an-
gular speed (on the gearbox side
of the low-speed shaft

rpm

YawPzn ElastoDyn -
Nacelle Yaw
Motions

Nacelle yaw angle (position) deg

TwrBsMyt ElastoDyn -
Tower Base
Loads

Tower base pitching (or fore-aft)
moment (i.e., the moment caused
by fore-aft forces)

kNm

GenPwr ServoDyn -
Generator
and Torque
Control

Electrical generator power kW

To train the model a dataset with a total simulated time of approximately
2,5 days is used. Additionally, the model is validated on an additional simulated
dataset with a total simulated time of approximately 1,5 days. This data is not
used to train the model and can thus be used as a fully independent validation
set.

Results are shown in Figure 4.16. A good match between modeled thrust load
F̂T and simulated thrust load FT,s can be found during both training and validation
phase (Figures 4.16a and 4.16b). Figure 4.16c shows the relative error ∆ε between

simulated and modeled thrust load (∆ε =
abs(FT,s−F̂T )

FT,s
) versus wind speed for the

test set during the training phase and the total dataset during the validation phase.
The line indicates the median value of the relative error, calculated for each wind
speed bin of 0, 5m/s. The surface spans from the 5th to the 95th percentile of the
data. In general, the 95th percentile of the relative error of both datasets barely
exceeds 10%, except for very low wind speeds. Here, a higher relative error is
found due to the lower absolute values of the thrust load. For higher wind speeds,
errors are increasing. Starting from 12m/s an increasing variability in relative
error can be observed for increasing wind speed. A similar behavior was found
for the training and the validation set during the training phase. This indicates
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the training set was representative for the validation set, the test set and the total
dataset during the validation phase.

(a) Modeled and simulated thrust loads for
the total dataset of ca 2,5 days during the
training phase, including training, valida-
tion and test set

(b) Modeled and simulated thrust loads for
the total dataset of ca 1,5 days during the
validation phase

(c) The relative error for the test dataset
during the training phase and the addi-
tional dataset during the validation phase

Figure 4.16: Results based on simulation data obtained with FAST. The lines
indicate median values for every wind speed bin of 0, 5m/s; the surface spans from
the 5th to the 95th percentile of the data.

For further illustration, four time series spanning 10 minutes during the val-
idation phase are shown in Figure 4.17, two while operating below rated power
(Figures 4.17a and 4.17b) and two while operating at rated power (Figures 4.17c
and 4.17d). The time series of 10 minutes with the highest averaged absolute error
between simulated and modeled thrust loads below rated and at rated power are
shown in Figure 4.17b and Figure 4.17d respectively. In all cases a very good
match between the model and the simulated data is found. This is represented by
a low value for the averaged absolute relative error for those time series (MRE <
4,5%).
The presented results confirm the feasibility of the proposed methodology to re-
produce the thrust loading purely on SCADA data.
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(c) At rated power. MRE = 2,7471%
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(d) At rated power. MRE = 4,4626%

Figure 4.17: Time series (spanning 10 minutes) of modeled and simulated thrust
loads below rated (a,b) and at rated power (c,d). For each operational state, the
time series with the highest averaged absolute error is shown (b,d). MRE shows
the averaged absolute relative error over 10 minutes.



4.4. Modeling technique 89

Application to real world: offshore wind turbine

The proposed modeling method is also tested on an operating wind turbine. First,
results from [18] are shown and discussed. In the current analysis, the model is
trained using 2 weeks of data and validated using one year of data. The validation
period includes the training period. A different period from the one described
in Section 4.4.1 is used. The model was trained and validated using generating
conditions only.

(a) Modeled and measured thrust loads for
the total dataset of 2 weeks during the
training phase, including training, valida-
tion and test set

(b) Modeled and measured thrust loads for
the total dataset of one year during the val-
idation phase

(c) The relative error for the test dataset
during the training phase and the addi-
tional dataset during the validation phase

Figure 4.18: Results based on measurement data obtained from an operating
offshore wind turbine. Only data during generating conditions is considered. The
lines indicate median values for every wind speed bin of 0, 5m/s; the surface spans
from the 5th to the 95th percentile of the data.

Results are shown in Figure 4.18. A good match between measured thrust
loads FT,m and modeled thrust loads F̂T can be found during both training and
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validation phase. Although above roughly 18m/s, the modeled thrust curve shows
less variability than the measured curve, meaning the difference between the 5th
and the 95th percentile of modeled thrust is lower than the difference between
the 5th and the 95th percentile of measured thrust (Figure 4.18a,b). Figure 4.18c

shows the relative error (∆ε =
abs(FT,m−F̂T )

FT,m
) of the test set during the training

phase, being 15 % of the total training set of 2 weeks, and the total dataset during
the validation phase of one year of operation. Again the line indicates the median
value, calculated for every wind speed bin of 0, 5m/s. The surface spans from
the 5th percentile to the 95th percentile of the data. A similar behavior among
the training, validation and test set during the training phase was obtained. In
general, the relative error does not exceed 15 %. Moreover, with a median value
barely exceeding 5 %, results are promising.
In general, the errors have increased with respect to the results using FAST (as
shown in Figure 4.18c).
The errors obtained for lower wind speeds up to 10m/s have increased due to a
difference between the averaged measured and the averaged modeled value during
a certain period, called an offset. These offsets have even increased for the long
term validation set, with respect to the test set during the training phase. As a
result, the errors have increased as well.
Furthermore, the errors obtained for wind speeds higher than ca. 18m/s are
slightly higher due to the loss of variability in the tail of the thrust curve. Again,
an increasing variability in relative errors can be observed for increasing wind
speeds, starting from ca. 12m/s.

To further illustrate these observations, four time series of 10 minutes are shown
in Figure 4.19. Two of them show operation below rated power (Figures 4.19a
and 4.19b), while the other two show operation at rated power (Figures 4.19c
and 4.19d). The time series depicted in Figure 4.19b and Figure 4.19d show 10
minutes with the highest averaged absolute error when operating below or at rated
power respectively. An offset can be observed in Figures 4.19a and 4.19b, while
the loss of variability can be observed in Figure 4.19d. The values of the averaged
absolute relative error indicate the match is still acceptable (MRE smaller than
6,5 %). As explained, the resulting errors are influenced a lot by present offsets
between the measured and the modeled thrust load signal. However, these offsets
won’t influence a fatigue assessment performed according to common practice in
industry. This practice consists in cycle counting of the stress signals and trans-
forming the cycle counts into damage using the Miner’s rule. As this approach
only considers the size of the cycles, the following fatigue assessment is not influ-
enced by the mean value of the cycles.
However, when looking at a longer period of time than 10 minutes, it can be seen
these offsets are not constant over time. This means that they will influence a fa-
tigue assessment if the assessment is performed based on signals consisting much
longer than 10 minutes.
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(c) At rated power. MRE = 1,6433%

0 100 200 300 400 500 600

Time (s)

0.4

0.5

0.6

0.7

0.8

N
o
m

a
liz

e
d
 T

h
ru

s
t 
L
o
a
d
 (

-)

(d) At rated power. MRE = 6,4893%

Figure 4.19: Time series (spanning 10 minutes) of modeled and measured thrust
loads below rated (a,c) and at rated power (b,d). For each operational state, the
time series with the highest averaged absolute error is shown (c,d). MRE shows
the averaged absolute relative error over 10 minutes.



92 Chapter 4. Thrust modeling

The same procedure was repeated using all data, including operational and
parked conditions. Here, the same training and validation period is used as ex-
plained in Section 4.4.1. Results are shown in Figure 4.20. Again, a good match
between measured thrust loads FT,m and modeled thrust loads F̂T can be found
during both training and validation phase, for both operational and parked con-
ditions. Although above 18m/s, the modeled thrust curve shows less variability
than the measured curve (Figure 4.20a and Figure 4.20b). This was also observed
when only generating data was used to train and validate (Figure 4.18). However
the difference in variability is even bigger when parked and idling conditions are
included in the training data (Figure 4.20). In Figures 4.20a and 4.20b a distinc-
tion is made between very low values for thrust and higher values. The normal
thrust curve, for which thrust loads go up to their maximum value, primarily rep-
resents the generating cases. The very low values for thrust load (below zero),
represented by the lower part of the figure, are mainly caused by non-generating
cases. When looking at the non-generating cases in Figure 4.20b, an acceptable
match between measured and modeled thrust loads is observed as well. This is
even the case for the wind speed range where the training set lacked a bit of data
(between 10m/s and 15m/s). Figure 4.20c shows the absolute relative error of
the test set during the training phase, being 15 % of the total training set of 2
weeks, and the total dataset during the validation phase of one year of operation.
Again the line indicates the median value, calculated for every wind speed bin of
0, 5m/s. The surface spans from the 5th percentile to the 95th percentile of the
data. A similar behavior among the training, validation and test set during the
training phase was obtained.
Generally, the results of the relative absolute error are promising. The median
value stays far below 10%, except for very low and very high wind speeds. Striking
are the very high errors for high wind speeds in the training test set, with respect
to the validation set. Most likely, the training test set has a higher percentage
of data points when the turbine was not generating power than the validation
dataset. During non-generating conditions, the absolute value of thrust load is
very low. This low value can lead to a very high relative error, even though the
error is not that big in absolute terms.
When comparing these results to the ones obtained when only generating condi-
tions were considered (Figure 4.18), an increase in error can be observed. Again,
this can be explained by the existence of data points when the turbine is not gen-
erating and their higher relative errors. Since non-generating conditions usually
occur for very low wind speeds below cut-in and very high wind speeds above
cut-out, these regions show a higher relative error.
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(a) Modeled and measured thrust loads for
the total dataset of 2 weeks during the
training phase, including training, valida-
tion and test set

(b) Modeled and measured thrust loads for
the total dataset of one year during the val-
idation phase

(c) The relative error for the test dataset
during the training phase and the addi-
tional dataset of one year during the vali-
dation phase

Figure 4.20: Results based on measurement data obtained from an operating
offshore wind turbine. The lines indicate median values for every wind speed
bin of 0, 5m/s; the surface spans from the 5th to the 95th percentile of the data.
For the thrust curve, two datasets are considered for each wind speed bin. One for
high thrust loads and one for low thrust load (the limit is ca. 5% of the maximum
thrust).
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(a) Not generating. MRE = 30,4%
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(b) Not generating. MRE = 113%
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(c) Below rated power. MRE = 2,45%
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(d) Below rated power. MRE = 25,4%
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(e) At rated power. MRE = 4,48%
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(f) At rated power. MRE = 10,5%

Figure 4.21: Time series (spanning 10 minutes) of modeled and measured thrust
loads for not generating(a,b), below rated power (c,d) and at rated power (e,f).
For each operational state, the time series with the highest averaged absolute error
is shown (b,d,f). MRE shows the averaged absolute relative error over 10 minutes.
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Again, six time series of 10 minutes are shown in Figure 4.21. Two of them show
non-generation (4.21a and 4.21b), two show operation below rated power (4.21c
and 4.21d) and the remaining two show operation at rated power (4.21e and 4.21f).
The time series depicted in Figure 4.21b, Figure 4.21d and Figure 4.21f show 10
minutes with the highest averaged absolute error when not generating, operating
below or at rated power respectively. Again, an offset can be observed for almost
all examples and the amplitude of the cycles at rated power is not always mod-
eled correctly (Figure 4.21e). For non-generating conditions, one can observe high
offsets and the oversensitivity of the model to SCADA parameters such as wind
speed (Figure 4.21a) or blade pitch angle (Figure 4.21b).
The values of the averaged absolute relative error indicate the match is usually
still acceptable, but in case of bigger offsets or non-generating the MRE values get
quite high.

In conclusion, one could decide to split up the model based on operating con-
ditions. However, a prior more profound analysis of the resulting errors between
measured and modeled thrust load is advisable. This analysis should split up the
resulting errors properly based on operating conditions. In that case it would be
possible to conclude whether or not the inclusion of all data points, with respect
to only generating data points, influences the performance of the neural network
in case of power generation.
Another possibility is to only include generating conditions in the training set,
since the thrust load during non-generating conditions is typically negligible com-
pared to the other loads acting on the wind turbine.

4.4.3 Correlation between measured and modeled signal

In Section 4.3, the Pearson correlation and the mutual information were calculated
between the measured thrust signal and several SCADA signal to decide which
parameters would be the most valuable. A similar analysis can be done between
the measured and the modeled (1Hz) thrust signal. This is done for two types of
models, one is trained with 10 minute averages (Section 4.4.1), while the second
model was trained with 1s data (Section 4.4.2). For both models the same 2,5
month period was considered

Figure 4.22 shows that for all generating data, the Pearson correlation (Fig-
ure 4.22a) and the mutual information (Figure 4.22b) for both modeled thrust
loads have greatly improved over the individual SCADA parameters. These in-
creased values indicate a lot of the present variability in the thrust load can be
explained by combining several SCADA parameters even on a 10min basis.
When looking at the results for non-generating data, the performance for the mod-
eled thrust loads are not always higher than for some of the SCADA parameters,
such as the blade pitch angle and rotor speed. This also indicates improvement
can still be achieved in modeling the thrust when the turbine is not generating
power.
To compare the results of both models, the absolute values are given in Table 4.3.
One can see that in almost all cases the model trained using 1s data obtained
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(a) Pearson correlation

(b) Mutual information

Figure 4.22: Pearson correlation and mutual information between measured thrust
and the input parameters and the two types modeled thrust load for 1s data. One
modeled thrust load is obtained using a model trained with 10min data (Sec-
tion 4.4.1). The second modeled thrust load is obtained using a model trained
with 1s data, including non-generating conditions (Section 4.4.2). For the Pearson
correlation of the input parameters, the absolute value is shown.

.

higher (linear and non-linear) correlation values than the model trained using 10
minute averages. The slight raise of the 1s model over the 10min model indicates
allowing some latency, or time-lag, between the different signals improved the pre-
diction even more. This confirms the previous analyses, where the model trained
with 1s data also showed better results.

Table 4.3: The resulting values for Pearson correlation and mutual information
between measured and modeled thrust load. Two types of models are used.

Pearson Correlation Mutual Information
10min model 1s model 10min model 1s model

All generating data 0,9927 0,9941 0,2331 0,2472
Below rated power 0,9959 0,9965 0,2991 0,3113
At rated power 0,9672 0,9746 0,1498 0,1695
Not generating 0,8791 0,9040 0,0903 0,0820

4.5 Cross validation

In theory one thrust model is valid for every turbine of the same type, as indicated
in Section 4.2.2. To validate this statement, the model obtained using all 1s data
from one turbine (as shown in Section 4.4.2) was applied on a different turbine
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(a) Modeled and measured thrust loads for
the total validation dataset of two months

(b) The absolute relative error for the val-
idation dataset of two months and the test
set during the training phase

Figure 4.23: Cross-validation results where the model was trained on a different
turbine in the farm. Model outcome using 1s data of SCADA parameters and
measured strains for two months. The model was trained based on 1s SCADA
data and measured strains of 2 weeks. The lines indicate median values for every
wind speed bin of 0, 5m/s; the surface spans from the 5th to the 95th percentile
of the data. For the thrust curve, two datasets are considered for each wind speed
bin. One for high thrust loads and one for low thrust load (the limit is ca 5% of
the maximum thrust).

of the same type that was also instrumented with a load monitoring setup. This
cross validation was done for a shorter period of 2 months, as availability of data
on the second turbine was less.
Figure 4.23a shows the measured and resulting modeled thrust load for this turbine
and Figure 4.23b shows the relative absolute error between both.

A good agreement between modeled and measured thrust load is found (Fig-
ure 4.23a). Given the smaller dataset, no measurements were obtained for high
wind speeds during these two months. This is also represented by the relative error
(Figure 4.23b). Again, the biggest errors are found for very low wind speeds, due
to the low absolute value of thrust loads. In general, the errors obtained for the
cross validation are slightly higher than those of the test set during the training
phase. The match is still acceptable and the cross validation can be considered a
success.

The trained model was cross validated a second time, on a turbine of the
same type but at which a rotor imbalance caused an additional cyclic loading at
the rotational (1P) frequency. Since this frequency is quite low, it is still within
the frequency band of the thrust load ([0, 0, 2]Hz). However, SCADA data is
believed not to be influenced by such a 1P harmonic. Figure 4.24 shows the
results for this cross validation. Figure 4.24a shows a clear difference between
measured and modeled thrust load. First of all, the modeled thrust load seems
to be underestimated by the model. Moreover, the surface spanning from the 5th
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(a) Modeled and measured thrust loads for
the total validation dataset of two months

(b) The absolute relative error for the val-
idation dataset of two months and the test
set during the training phase

Figure 4.24: Cross-validation results between two turbines in a single farm,
however for the considered period the validation turbine had a significant load-
imbalance.

to the 95th percentile is clearly smaller in case of the modeled thrust load with
respect to the measured thrust load. This was also the case for the validation
on the same turbine (Figure 4.20). But it was not observed for the first cross
validation (Figure 4.23), although it is usually mainly present for very high wind
speeds over 18m/s. When looking at the absolute relative error (Figure 4.24b),
again an significant increase in errors can be observed over the entire wind speed
range.

The explanation of this increase in errors can be illustrated using a time series
(Figure 4.25). Looking at the time series, the overall trend of both signals is similar.
However, the measured signal shows a lot more cycles at a specific frequency. These
are the result of rotor imbalance, causing a 1P variation. It is clear from these
results the effects of the additional load due to a rotor imbalance are not reflected
by the model.
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Figure 4.25: Time series (spanning 10 minutes) of modeled and measured thrust
loads for operation below rated power. The turbine is influenced by a rotor im-
balance causing a 1P variation in the measured signal.
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4.6 Importance of data quality

To illustrate the importance of the quality of the SCADA data used to train and
apply a thrust model, the same analysis is done for a different turbine (of a different
type). This turbine was installed on a monopile instead of a jacket. First strong
data filters where applied to remove all unrealistic data. The filters consisted in
removing all data points for which the wind speed or the generated power had a
value outside the interval [0; 50]m/s or [−0, 1; 1, 25] ·Prated respectively. Moreover
a comparison is made between the wind speed value in the 10min SCADA dataset
and the average value over 10 minutes based on 1s SCADA data. If the difference
is bigger 0, 1m/s, indicating an inconsistency in the SCADA data, the entire time
series was rejected. Finally, any other data points for which the wind speed value
is exactly the same for two or more consecutive data points, are rejected as well.
Most of these inconsistencies are believed to be the result of a storing issue of the
data.
After these filters, only 54,57% of the total original dataset remained. This implies
that when a 1sec model would be used, it can only be applied 55% of the time, as
the 1s SCADA and consequently the model outcome is otherwise unreliable.
An additional difference in data quality was the accuracy of the data. Instead of
having two decimal places for all measurements, the SCADA data of this turbine
only had one decimal place. This affects the observability of small changes in the
SCADA signals.
Two weeks of the remaining 1s data was used to train a thrust model. Afterwards
the model was validated on 1s data of 6 months, again after applying the same
strong data filters. Results are given by Figure 4.26. For both the training data
and the validation data a fairly good match can be found for the median thrust
curve (Figures 4.26a and 4.26b). Although, a clear difference in results can be
observed between the validation and the training set. When looking at the surface
spanning the 5th to the 95th percentile, the model is not capable of capturing
the entire surface, especially for maximum thrust and high wind speeds. This
is the case for both training data and validation data. This is translated into a
much higher absolute relative error for both datasets (Figure 4.26c), compared to
previous models (for example Figure 4.20c). It is believed this is due to the poor
quality of the SCADA data. Since the quality is less, lower variation in the specific
parameters can be observed and used by the neural network.
It should be noted, given the different foundation, the role of waves can play a role
as well. As monopiles are more prone to wave loads than jackets, it might be some
wave loading is still present in the measured thrust signal. However, this wave
loading cannot be predicted by the thrust model based on SCADA data. More
in depth analysis to distinguish the role of the quality of the data and the role of
the waves might be advisable. Nonetheless the perfect results obtained using the
simulation data of FAST in Section 4.4.2 and depicted in Figure 4.16, were based
on a OWT installed on a monopile subjected to wave loading. This could indicate
the role of wave loading in this approach is minor.
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(a) Modeled and measured thrust loads for
the total dataset of 2 weeks during the
training phase, including training, valida-
tion and test set

(b) Modeled and measured thrust loads for
the total dataset of six months during the
validation phase

(c) The relative error for the test dataset
during the training phase and the addi-
tional dataset of six months during the val-
idation phase

Figure 4.26: Results based on measurement data obtained from an operating
offshore wind turbine with data of less quality. The lines indicate median values
for every wind speed bin of 0, 5m/s; the surface spans from the 5th to the 95th
percentile of the data. For the thrust curve, two datasets are considered for each
wind speed bin. One for high thrust loads and one for low thrust load (the limit
is at zero).
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4.7 State-by-State modeling approach

An alternative modeling approach has been published in [19]. Instead of a single
model to cover all states of the turbine, the presented approach trained differ-
ent neural network models for different operational states of the turbine. The
considered states were:

• not generating power

• generating below rated power

• generating at rated power

The decision of which input parameters should be used to create the model is
based on the results for the Pearson correlation and mutual information for each
operational state (Section 4.3). When the turbine is not producing, the highest
correlations are found for blade pitch angle, generated power and rotor speed. For
operation below rated power, rotor speed, wind speed and generated power are
selected. Finally, when operating at rated power: blade pitch angle, generated
power and wind speed are the considered input parameters. The aforementioned
is summarized in Table 4.4.

Table 4.4: For every regime, a neural network is trained with a different input
parameter set

Non-producing Below rated power At rated power
blade pitch angle x
rotor speed x 4
wind speed 4
produced power x 4

For each of the three regimes, a neural network is trained using the default
MATLAB functions. This means the training dataset is randomly split up into
training (70%), validation (15%) and test data (15%). A feed-forward neural net-
work with one hidden layer with four neurons is trained with the remaining training
data, based on the Levenberg-Marquardt algorithm. The transfer function for the
hidden layer is a tan-sigmoid transfer function; for the output layer it is a linear
transfer function. The training stops when the validation error failed to decrease
for six iterations. Finally, the resulting model to estimate the thrust load combines
the three neural networks, where for each data point first is decided which neural
network will be used to estimate the thrust load, based on the SCADA values.
The main advantage of this modeling technique is the increased flexibility with
respect to input parameter selection. Different parameters can be chosen for dif-
ferent regimes. This might increase the understanding of the system and facilitate
a transition to a regression technique. [60] mentions the necessity to establish
separate regression models over the entire operating range.
On the other hand, this technique requires an increased foreknowledge about the
different operating states of the turbine. Moreover, by splitting the model, chances
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are bigger to have worse predictions in transition areas.

The alternative technique is applied on the 1s measurement dataset used in
Section 4.4.2. Figure 4.27 shows the measured thrust load for the same training
dataset as in Section 4.4.2, divided into 3 groups based on the operating state of
the turbine. De-rated data is classified in the category ’below rated power’.

Figure 4.27: Measured thrust load, calculated from measured strains, vs wind
speed. The data points are divided into 3 regimes: non-producing, producing
below rated power and producing at rated power.

Table 4.5 gives the resulting mean and median absolute relative error for the
test set of each regime. The mean value for the operating state below rated power
is rather high, possibly caused by some points of de-rating.

Table 4.5: The mean and median relative absolute error (RAE) of each neural
network on the test data set

Non-producing Below rated power At rated power
Mean RAE 0,4281 10,6370 0,0425
Median RAE 0,1438 0,0269 0,0336

Figure 4.28a shows the resulting modeled thrust load, together with the mea-
sured thrust load for the training set. Figure 4.28b does the same for the validation
data set of one year utilized in Section 4.4.2. Figure 4.28c shows the relative error
between measured and modeled thrust load for the test set during the training
phase and the validation dataset of one year.

Figures 4.28a and 4.28b show a good agreement between measured and mod-
eled, except for the non-producing data points for wind speeds higher than 10m/s.
Moreover the modeled thrust load has clearly much less variability for producing
data points for wind speeds higher than 20m/s, just as the model trained by all
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(a) Modeled and measured thrust loads for
the total dataset of 2 weeks during the
training phase, including training, valida-
tion and test set

(b) Modeled and measured thrust loads for
the total dataset of one year during the val-
idation phase

(c) The relative error for the test dataset
during the training phase and the addi-
tional dataset during the validation phase

Figure 4.28: Results based on measurement data of an offshore wind farm. The
model utilized is based on a split according to the operational state of the turbine.
The lines indicate median values for every wind speed bin of 0, 5m/s; the surface
spans from the 5th to the 95th percentile of the data. For the thrust curve, two
datasets are considered for each wind speed bin. One for high thrust loads and
one for low thrust load (the limit is ca 5% of the maximum thrust).
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data at once. Relative errors are comparable to those obtained using one neural
network for all data points (Figure 4.20c).

With some additional effort and enough foreknowledge about the turbine, this
approach might result in an improved model with respect to the single model,
e.g. in non-generating conditions. However, the results obtained with the models
as proposed in this section did not show a great improvement. Therefore, if the
obtained results with one single model are already satisfying, there is no need to
combine different models based on the operating state of the turbine.

4.8 Conclusions

An approach to estimate thrust load signals based on SCADA data is explained
and validated in this section. Wind speed, rotor speed, blade pitch angle and gen-
erated power are selected as input parameters based on both linear and non-linear
correlation analyses, Pearson correlation and mutual information respectively.
Strain sensors are used to measure the acting thrust load. This thrust load signal
is combined with SCADA signals to train a neural network. This was done for
both 10min and 1s data.
For a model trained with 10min data, good results were obtained for the applica-
tion of the model on 10min data. However application of such a 10min model on
1s signal is not advised. Overall, the 10min model can predict the larger cycles in
the 1s signal. However, the equally important smaller variations can be missed or
over-predicted.
Therefore most thrust load models in this chapter were trained using 1s data. All
training was done based on only two weeks of data. This training period seemed
to be sufficient for the prediction. However it is important to make sure the full
wind speed range occurred during this training period. If this is not the case, a
different or longer training period has to be selected.
The validation is done using FAST simulation data and data measured at an off-
shore wind turbine during one year. Time series show a good match between
modeled and measured or simulated thrust signals. In general, the absolute rel-
ative error barely exceeds 20 % and the median value per wind speed barely 5%
under normal operating conditions. Results obtained using FAST data are slightly
better than those of the real world offshore wind turbine.
When only considering generating conditions, results are even better. An improve-
ment for parked and idling conditions could be suggested, but in reality the thrust
load during those conditions is not of high value. During non-generating condi-
tions, other loads are more dominant than the thrust load.
The use of 1s SCADA data can be considered as the main advantage of this
approach. A cross validation was successfully performed, validating one of the
trained models on a different turbine of the same type. Thus the model proofs to
be transferable among turbines of the same type. Therefore this approach can be
applied on any (non-instrumented) wind turbine within a wind farm, if the turbine
type matches.
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In theory, any instrumented turbine can be used to train the thrust model. How-
ever, it was shown that an additional 1P variation caused by a rotor imbalance
was not filtered out of the measured thrust load signal. However, such an addi-
tional loading is not captured by the SCADA data. Therefore, the model should
be trained on a turbine without a rotor imbalance.
Essential in this approach is the preprocessing and the quality of the SCADA data.
It was shown less accurate SCADA data resulted in higher relative errors between
measured and modeled thrust load. At least two decimal places would be advis-
able. Moreover, the more SCADA data has to be removed, the less modeled thrust
load values can be obtained. Keeping that in mind, a good storing procedure of
1s SCADA values is advised as well.
Further improvement of the proposed technique is definitely still possible. First
of all, more foreknowledge about the turbine and its working principles can help
improving the model by, for example, a better selection of input data or a possible
split in model based on the operating state. Moreover, as the results obtained in
this section were based on the default settings of the neural network toolbox in
MATLAB, improvement of the model settings of the neural network can still be
done. Neither was the predefined topology of the neural network changed during
the analyses. This means (slight) improvements might be possible here as well,
both in terms of computational time and resulting errors.
Additionally, the robustness of the model training should be checked for future
applications.
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Chapter 5

Full load estimation

The majority of the work presented in this chapter has been published in [19, 20].

An accurate stress or strain history at fatigue critical locations is a vital input
for a fatigue assessment for offshore wind turbines. Unfortunately, it is not always
feasible to install strain gauges at these fatigue hot spots, especially on existing wind
turbines. This chapter compares two techniques to obtain a reliable stress history
at any location of the turbine structure using the combination of a SCADA-based
thrust load and additional accelerometers. This simplifies the existing techniques
for virtual sensing [13] as it eliminates the need to use strain gauges, which are
typically unreliable and costly to install, by using a data-source that is available on
every turbine.
The first technique in this chapter is based on modal decomposition and expansion,
the second is based on a Kalman filter. Both techniques are validated and compared
using data from an offshore wind turbine monitored by OWI-lab. The monitored
turbine is instrumented with strain gauges at the interface between transition piece
and tower and accelerometers at multiple levels. The installed strain gauges allow
to validate the proposed techniques with respect to the reality.
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5.1 Introduction

For offshore wind turbines, both quasi-static wind/thrust loads and dynamic loads,
as induced by turbulence, waves and the turbine’s dynamics, contribute to its fa-
tigue life progression. To estimate the remaining useful life of an offshore wind
turbine, the stresses acting on the fatigue critical locations within the structure
are an important input. Therefore they should be monitored continuously. Un-
fortunately, in case of the most common monopile foundations these locations are
often situated below sea-level and near the mud line and thus difficult or even
impossible to access for existing turbines. To resolve this limitation OWI-lab has
worked on the concept of virtual sensing [75, 76, 13]. Virtual sensing allows to es-
timate stresses at hotspots using measurements taken at more accessible locations
within the structure such as on the tower structure. In particular accelerometers
are favored as sensors, due to the ease of installation and their reliability on the
long term. However, low frequency thrust loads cannot be adequately captured
using accelerometers. Up to this point strain gauges have been part of the virtual
sensing strategy in order to quantify the low-frequency contributions. However,
strain gauges are not favorable for application offshore. While the sensor itself
is cheap, the installation is time-consuming and prone to error even for skilled
technicians. Moreover it is very likely the strain gauges will fail over time.
This research investigates to what extent SCADA data can be used, as explained
in Chapter 4, to replace the role of the strain gauges once these have failed or on
different sites in the wind-farm where no strain gauges are installed. In this chap-
ter two techniques are introduced to combine both quasi-static (obtained from the
SCADA model) and dynamic loads (derived from the accelerometer) to estimate
the full band strain history at any location on the foundation induced by the loads
acting on the entire structure.
The focus of this chapter is to validate the possibility to merge a thrust load sig-
nal sampled at 1Hz, as would be the outcome of the SCADA-model of Chapter 4,
with the outputs of a high-frequency dynamic prediction. To avoid any errors orig-
inating from the SCADA model, the thrust load signal used for this validation is
obtained from the measured strain signal. This is done in the same way to obtain
the measured thrust signal to which modeled strain were compared in previous
chapter (Chapter 4) and is explained in Section 4.2.1. As such a perfect model
could be assumed.
To show the full potential, one of the techniques is also applied using the SCADA-
based thrust load estimations as obtained using a model as explained in Chapter 4.

The proposed techniques are validated using strain measurements above sea
level, at the interface between tower and TP. However, the final goal of virtual
sensing is to estimate the stress signals at fatigue hotspots, often near the mud
line. Therefore the work presented in this chapter is only the first step towards
validation of virtual sensing. [77] shows the continuation of the validation at
multiple locations in the monopile under water and subsoil.
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5.2 Monitoring campaign

The techniques proposed in this contribution will be validated using measurements
taken at an offshore wind turbine located in the middle of the Belgian offshore
wind farm Belwind, 46 km off the Belgian coast. This Vestas 3MW V90 turbine
is installed on a monopile foundation and was instrumented with additional ac-
celerometers and strain gauges during multiple measurement campaigns.
The turbine was instrumented with accelerometers in the beginning of 2012 and
with strain gauges in September 2014. Acceleration measurements are taken at
4 levels using a total of 10 accelerometers. Eight accelerometers (two per level)
capture the vibrations in the X-Y direction and the two additional accelerometers
at the highest level (tower top) are utilized to identify torsional vibrations in the
tower. The locations are chosen based on the convenience of sensor mounting,
such as the vicinity of platforms. Moreover four fiber Bragg grating (FBG) sen-
sors at the Tower/Transition Piece interface have been installed. Figure 5.1 gives
an overview of the instrumented OWT at the Belwind farm.

(a) 19,00m (b) 27,00m

(c) 41,00m (d) 69,00m

Figure 5.1: Instrumentation of BBC01 wind turbine at the Belwind farm dur-
ing the first monitoring campaign. The circles in (a) indicate the presence of a
Fiber Bragg Grating strain sensor; the arrows in (a-d) indicate the presence of an
accelerometer.

In 2016 these sensors were replaced by a total of eight accelerometers and six
strain sensors (SG). The accelerometers were installed at four different levels in
the turbine tower (two per level) in order to capture vibrations in both X and Y
direction. The strain gauges were installed on the lowest level, being the interface
between tower and transition piece. An overview of the location of the sensors
during this campaign is given in Figure 5.2.
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(a) 19,00m (b) 27,00m

(c) 41,00m (d) 69,00m

Figure 5.2: Locations of the additional sensors at of BBC01 wind turbine at the
Belwind farm during the second measurement campaign. The circles in (a) repre-
sent a strain gauge; the arrows in (a-d) represent an accelerometer.

The accelerations measured at all levels together with the thrust load will
be used to predict the strains measured at the tower-TP interface and finally to
predict the strains at hotspots located below the water level.

5.3 Modal decomposition and expansion

The work explained is this section is a collaboration with Alexandros Iliopoulos
and is published in two conference papers ([19] and [20]).

5.3.1 Concept

The main goal of virtual sensing is to estimate the stresses at the fatigue-sensitive
hotspots without the need of mounting sensors at these exact locations. This sec-
tion will summarize the multi-band virtual sensing technique based on modal de-
composition and expansion. This technique combines measurements with a tuned
finite element model (FEM) of the structure to predict stresses at any location
of the structure. The FEM is created using pipe elements with the as designed
dimensions of the turbine’s substructure. This FEM is tuned to match the modal
properties (the natural frequencies, the mode shapes and the damping ratios of
the turbine) obtained experimentally using the continuous data acquisition and
by applying state of the art operational modal analysis techniques that have been
fully automated [33, 78, 79]. More information about the finite element model and
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the tuning can be found in [75]. Figures 5.3 and 5.4 show the resulting structural
and strain mode shapes respectively.

Figure 5.3: First three structural mode shapes of an offshore wind turbine. The
first mode is captured best using the top accelerometer, while the second and third
mode are captured better using the lower sensors.

Figure 5.4: The static strain mode shape together with the strain mode shapes of
the first three modes from mudline to tower top level.
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Figure 5.5: Frequency spectrum of the different loads acting on an offshore wind
turbine in parked conditions and at rated rotor speed. The quasi-static load is
dominated by the thrust load induced by variations in wind. Dynamic variations
are induced by waves, structural dynamics and rotor harmonics.

As indicated in Section 2.1.6, the stresses observed at any location in the struc-
ture are induced by a variety of loads, each acting in a different frequency range.
This can be seen in Figure 5.5. Since the structure responds differently to quasi-
static loads than to dynamic loads, both types of loads are treated differently.
This distinction is made based on the frequency spectrum of the loads acting on
a turbine. The quasi-static thrust load can be estimated using 1s SCADA data.
Unfortunately, with a 1 second sampling rate only loads up to 0,5Hz can be cap-
tured. Loads with higher frequencies such as the rotor dynamic and turbulence
induced loads are thus not captured by SCADA parameters. Moreover, wave and
current loads have no relation to SCADA and can thus also not be captured using
a SCADA model. Both wave and high frequent loads are combined as dynamic
loads. To capture these dynamic loads accelerometers are installed at easily ac-
cessible locations.

At very low frequencies situated well below the first eigenfrequency and below
the site-specific wave peak frequency, a.k.a. quasi-static region of frequencies, the
induced strains are caused by thrust loading. Under thrust load the strain distri-
bution of the turbine differs from the strain distribution of the lowest structural
mode (Figure 5.4). This implies the need for different strain mode shape com-
ponents to represent the thrust load induced strains. Equation (5.1) is used to
predict the quasi-static strains:

εQS
p (t) = φQS

εp

FT (t)

FT,ref
∀t (5.1)

where φQS
εp ∈ Rnp×1 is the quasi-static strain distribution at the np DOFs which

correspond to the virtual sensor locations p, FT (t) is the acting thrust load for
each time instance t and FT,ref is the reference thrust load which is exerted as a
static load at the tower top of the tuned FEM in order to obtain the quasi-static
strain distribution.
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The modal decomposition and expansion (MDE) based virtual sensing tech-
nique [80, 81] is used for dynamic strain prediction. The theoretical background of
this approach has been extensively presented in [76, 82, 75, 83, 84] and is repeated
briefly hereafter.
The basic concept behind MDE is that each deflection of the structure is con-
sidered a combination of deflection caused by the excitation of different modes.
Based on the acceleration measurements ẍ(t) and the acceleration mode shapes
Φacc the measurements are decomposed in the contributions of the different con-
sidered modes given as acceleration modal coordinates q(t). This is visualized by
Figure 5.6 and expressed in Equation 5.2.

q(t) = Φ−1
accẍ(t) (5.2)

Figure 5.6: Acceleration modal coordinates are obtained by decomposing accel-
erations measured at various locations in the tower using the acceleration mode
shapes.

Note that this operation requires that the number of modes considered is re-
stricted by the number of available acceleration measurements. In practice this
implies, that without prior knowledge, the number of considered modes is limited
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by the number of accelerometers installed.
The modal decomposition results in the estimation of the acceleration modal coor-
dinates q(t). Since strain is related to modal displacements, the found acceleration
modal coordinates are integrated twice. In this work, a double integration in the
Laplace domain was used, i.e. a multiplication of the Laplace spectrum with
1
s2 . After which, a change from Laplace domain to the time domain for continuous
strain prediction is achieved using the inverse Laplace transformation, L−1{•}. Fi-
nally, the estimated time domain displacement modal coordinates are multiplied
with the corresponding strain mode shape components Φεp derived numerically
from a tuned finite element model. Doing so, the prediction of dynamic strain
in any virtual location is established. Equation (5.3) summarizes the discussed
process.

εDp (t) = ΦεpL−1

{
1

s2
L
{
q(t)

}}
(5.3)

where Φεp ∈ Rnp×n are strain mode shapes of the n considered modes at the np
DOFs which correspond to the virtual sensor locations p, q(t) = {q1(t), q2(t), ..., qn(t)}T
are the modal coordinates that quantify the participation of each mode and L{•},
L−1{•} are the Laplace and inverse Laplace operations respectively.

The dynamic frequency band is subdivided in two parts as seen in Figure 5.5.
The first part captures the lower frequency turbine dynamics including waves and
the first structural mode (0, 2Hz up to 0, 5Hz) and the second part (higher than
0, 5Hz) captures all the remaining dynamics and modal behavior of the structure.
The reason for this subdivision is the benefit from the optimal use of the best
performing sensors in each dynamic frequency band. For example, sensors near
the top of the turbine are very valuable for assessing the first order motion, while
sensors closer to the bottom are nearly insensitive to this first order motion and
they barely measure above the noise floor. For higher modes in the high-frequent
dynamic band multiple modes and multiple sensors are necessary in order to op-
timally capture the dynamics.

Both the quasi-static and the dynamic strain contribute to the fatigue of an
offshore wind turbine. Therefore a superposition of both quasi-static and dynamic
contributions is made, leading to a prediction of the entire strain time history.
This is called multi-band virtual sensing and is summarized by Equation (5.4).

εp(t) = εQS
p (t) + εDp (t) (5.4)

One of the drawbacks of this approach is the discontinuity in the frequency
spectrum, since the signal is split in three frequency bands.

5.3.2 Results using strain gauges

The modal decomposition and expansion technique has been applied on mea-
surements done during the second measurement campaign. Figure 5.7 shows the
measured and predicted strain signal for one hour of measurements. In general,
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the predicted signals by both techniques match the measurements good in time
domain. This is also represented by a fairly low value of mean absolute error
between measurement and prediction of 2, 73µε.

(a) Time series of 1 hour. A mean abso-
lute error between measured and predicted
signal of 2, 73µε is found.

(b) Zoom of 100 s

(c) Frequency spectrum

Figure 5.7: Multi-band virtual sensing based on modal decomposition and expan-
sion validated for a period of 1 hour using strain data as input. The blue line
represents the actual measured signal and the green line the predicted signal.

In the frequency domain the technique can estimate quasi-static strain signals
up to 0, 2Hz almost perfectly, since the thrust signal used was calculated from the
measured strain signal. For higher frequencies the differences are clearly higher
but still the signals seem to match pretty well, although the first mode is slightly
underestimated.
Moreover, a drop can be observed around 0, 2Hz and more clearly around 0, 5Hz.
These frequencies coincide with the limits at which the signal is divided to de-
termine the different contributions to the resulting strain signal (quasi-static, low
frequent and high frequent). This means the accuracy of the predicted signal
reduces at the chosen limits in frequency for the different frequency bands. At
those frequencies not only one of the possible loads dominates the response but
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an interaction between multiple loads results in the actual response. However, the
prediction only captures one load, the one presumingly dominating the response.

5.3.3 Results using a SCADA-based thrust model

The technique was also applied on data from the first measurement campaign, in
combination with a preliminary thrust model for a site with relatively poor quality
SCADA data. Here, a thrust model as explained in Section 4.7 is trained using
10 minute averages and applied on 1s SCADA data. Table 5.1 shows the input
parameters selected for every operational state.

Table 5.1: The different input parameter sets used for the thrust model as trained
to proof the concept of Virtual Sensing with a SCADA-based thrust model and
modal decomposition and expansion.

Non-producing Below rated power Rated power
blade pitch angle x 4
rotor speed x 4
wind speed x
produced power 4

In Figure 5.8(a-b) indicative results of SCADA-driven quasi-static strain re-
sponse εQS

p and dynamic strain response εDp are shown. Moreover, a superposition
of these contributions (εp) is also given in Figure 5.8(c). These results are obtained
for an operating offshore wind turbine at rated speed. It is nicely observed that the
predicted strains adequately match the measured strains both in the sub-bands
and in the entire band of interest.
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(c) Multi-band Virtual Sensing εp

Figure 5.8: SCADA-driven quasi-static strain response and acceleration-driven
dynamic strain response superimposed resulting in the so-called multi-band virtual
sensing. The mean absolute error obtained for this example is shown in (c). The
blue full line is the actual measured signal and the red dashed line is the predicted
signal with the proposed technique. The example dataset corresponds to normal
operating condition at rated rotor speed of the offshore wind turbine.
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(a) Rated speed : 10 minutes
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(d) RPM ±10 : 10 minutes
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(g) Low-wind : 10 minutes
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Figure 5.9: Multi-band virtual sensing validated for a variety of operational cases.
The blue full line represents the actual measured signal and the red dashed line
the predicted signal with the proposed technique. The mean absolute error for
each example is shown in (a,d,g).
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The performance of the technique is also demonstrated by a couple of exam-
ples in Figure 5.9, where various operational states are represented. A good match
seems to be found between the predicted and the measured strains, both in terms
of amplitude and in terms of temporal evolution. This is reflected in both time
and frequency domain. In case of the two examples shown first (a-c) and (d-f),
an important contribution of the quasi-static thrust load can be observed. This
is also reflected in the frequency domain, as the spectral density for frequencies
lower than 0, 2Hz is comparable to the spectral density of the first mode. However
for the third example (g-i), the thrust load contributes very little. This indicates
that for low winds, the dynamics are dominant over quasi static load, whereas for
higher winds the thrust load will have a contribution of equal importance. The
same observation can be made in Figure 5.5. Moreover, the frequency spectrum
for frequencies higher than 0, 2Hz (i.e. the dynamic part) indicates a dominance
of the first mode. This justifies the use of only one mode to estimate the dynamic
behavior of the turbine.
The mean absolute error (MAE) is calculated for the given examples. The val-
ues for MAE are promising for the second and third example (d,g), 1, 5899µε
and 0, 7114µε respectively, but an improvement is needed based on the values ob-
tained for the first example (a) and the example shown in Figure 5.8, 16, 4868µε
and 7, 3222µε respectively, both representing production at rated speed. The fre-
quency spectra indicate the importance of the quasi-static part is higher in this
case than for non-producing or producing below rated speed. Therefore it’s most
likely an improvement of the thrust model, as explained in Section 4.4 and trained
with 1s SCADA, will influence the result considerably.

5.4 Kalman filter

The work presented in this section is a collaboration with Konstantinos Tatsis and
Eleni Chatzi and is published in a conference paper ([20]).
An alternative course for tackling the problem of fatigue estimation on the basis of
a limited number of vibration sensors consists in fusing the available measurements
with a Kalman filter for extrapolating the response at unmeasured locations. The
main advantage of this approach is the continuity in the frequency domain. There’s
no need to split the signals into frequency ranges. Another potential advantage
in using the Kalman filter is the fact the filter will attribute uncertainty to the
measurements. As such the filter will ignore values of the modeled thrust load,
caused by bad SCADA data, and the acceleration data that are unrealistic given
the underlying physical model of the turbine. Such a behavior does not exist in
the MDE approach as both contributions are directly combined (Equation. 5.4).

5.4.1 Concept

The starting point for implementing a Kalman filter towards state estimation on
wind turbines, is the continuous-time linear system of dynamic equations of mo-
tion, which is transformed to a discrete-time modally reduced state-space system.
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Such an approach is widely reported in the literature and herein it is only briefly
elaborated since the entire formulation and notation is adopted from [85]. In this
sense, the system and measurement equations may be written as

ζk+1 = Aζk + Bpk + wk (5.5)

yk = Gζk + Jpk + vk (5.6)

where ζk ∈ Rns is the state vector containing modal displacements and ve-
locities, yk ∈ Rny is the output vector, pk ∈ Rnp is the input force vector and
wk ∈ Rns along with vk ∈ Rnp are zero-mean white processes, with covariance
matrices Q ∈ Rns×ns and R ∈ Rny×ny , representing the system and measurement
noise, respectively. Finally, A ∈ Rns×ns and B ∈ Rns×np are the system matrices
while G ∈ Rny×ns and J ∈ Rny×np are the output and feedthrough matrices.
These matrices are based on a modal model, composed of the first six, three fore-
aft and three side-to-side, vibration modes. These modes are obtained from a
simple Finite Element (FE) model which is tuned in order to be in accordance
with the identified modal properties, i.e. frequencies, damping ratios and mode
shapes.
In the absence of information with respect to the driving forces, the state of the sys-
tem may be augmented with the input vector, so that ζak = vec(

[
ζk pk

]
∈ Rns+np ,

in order to form the so-called augmented state-space model

ζak+1 = Aaζak + wa
k (5.7)

yk = Gaζak + vk (5.8)

where superscript a designates the augmented quantities. By doing so, the evo-
lution of input is dictated by the augmented system matrix Aa ∈ R(ns+np)×(ns+np),
whereby it is postulated that the input can be captured by a random-walk process.

pk+1 = pk + ηk (5.9)

with ηk being a zero-mean white Gaussian process with covariance matrix
S ∈ Rnp×np . Within this context, both input and state may be estimated recur-
sively through the standard Kalman filter operating on the augmented state-space
model.
The measured response quantities of the considered turbine comprise accelera-
tions at four different elevations as well as the thrust force. The accelerations are
measured with a sampling rate of 20Hz and lack information on the quasi-static
loads. This lack of information is captured by the thrust force, measured with a
sampling rate of 1Hz. Due to this difference in the sampling rates, the above-
described filter is employed in a multi-rate fashion which is materialized with the
use of time-varying measurement noise. Considering that the lack of measure-
ments is equivalent to optimal filtering with large measurement errors [86] and
hence zero gain, the measurement noise corresponding to the thrust is set to an
arbitrarily large value when thrust measurements are not available and it is reset
to the tuned value as soon as thrust is measured again.
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The estimation is subsequently performed assuming that the dynamics of the tur-
bine are driven by the thrust force, applied on the tower top, and an equivalent
wave force exerted at the hydrodynamic center. In contrast with the modal de-
composition and expansion technique, the estimation using the Kalman filter does
not assume any explicit distinction between quasi-static, low frequency and high
frequency regimes. Instead, the quasi-static part of the response is captured by
the thrust force, sampled at a rate of 1Hz, and the higher frequency dynamics are
dictated by the acceleration measurements.

5.4.2 Results

Figure 5.7 shows the measured and predicted strain signal for the technique based
on the Kalman filter.

(a) Time series of 1 hour. A mean abso-
lute error between measured and predicted
signal of 2, 89µε is found.

(b) Zoom of 100 s

(c) Frequency spectrum

Figure 5.10: Multi-band virtual sensing based on a Kalman filter validated for a
period of 1 hour. The blue line represents the actual measured signal and the red
line the predicted signal.

As seen in Figure 5.10, the measurement setup based on the Kalman filter
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provides sufficiently good response estimation, which additionally does not suf-
fer from instability issues. In terms of time domain, a similar error is found for
the Kalman-based method as for the MDE-based method (shown in Figures 5.10a
and 5.7a respectively). However, in terms of the frequency domain of the strain
signal the match is not as good as for the results obtained using modal decompo-
sition and expansion (Figures 5.10c and 5.7c respectively).
It should be underlined that despite the straight-forward way of fusing different
types of measurements, tuning of the covariance matrices is always the key fea-
ture in obtaining an optimal estimation using Kalman-type filters. This is herein
achieved by firstly adjusting the system and measurement covariances, so that
the predicted accelerations show good agreement with the measured ones. This
is highlighted in Figure 5.11, through the frequency domain representation of the
two signals, which are well matching. Finally, once the two covariance matrices
are adjusted, the input process is tuned using the L-curve.
Although the frequency spectrum of measured and predicted acceleration signal
is well matching (Figure 5.11), this didn’t result in a similar match between both
strain signals. The predicted strain signal by the Kalman filter is based on accel-
eration measurements at the lower three levels. The top level acceleration signal is
dominated by the first mode and therefore out of phase to the other acceleration
signals. Such an effect is heuristically seen to work at the expense of the stress
estimates and as result the top acceleration was not used in the filter.
Another possible explanation for the mismatch in frequency domain is the lower
measurement frequency of the thrust signal. This causes the prediction to be up-
dated at some intermediate timestamps and results in big jumps in the predicted
signal, as shown in Figure 5.12.

Figure 5.11: Frequency spectrum of the
predicted and measured accelerations
at the level of 19,0m using the Kalman
filter.

Figure 5.12: A drop in predicted strain
is observed around 1182 s due to the
discontinuous updating of the thrust
force signal.
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5.5 Conclusion

In this chapter two possible techniques to reconstruct a strain history at fatigue
critical locations of monopile foundations of offshore wind turbines were com-
pared. Both techniques combine measured accelerations and a measured or mod-
eled thrust load signal. The first technique is based on modal decomposition
and expansion, the second is based on a Kalman filter. For both techniques a
good match is obtained in time domain. However in frequency domain, the tech-
nique based on modal decomposition and expansion showed better results than
the Kalman filter. Although the technique based on the Kalman filter has some
advantages over the technique based on modal decomposition and expansion, im-
provements are still needed to obtain similar results.
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Chapter 6

Lifetime assessment of an
instrumented turbine

Performing a lifetime assessment for a turbine basically means giving an accu-
rate estimate of when the turbine’s substructure likely will fail. In this chapter, a
methodology is presented to translate a measured stress signal at an accessible loca-
tion in the substructure of the OWT into damage and eventually into an expected
lifetime for multiple potentially fatigue hotspots of the structure. This methodol-
ogy consists of multiple steps. In a first step, the stress signal is transformed to
a fatigue damage. This is explained in Section 6.2. The actions needed for this
first step can be divided into three parts: rainflow counting of the stress signal, the
introduction of several stress correction factors and the application of the Miner’s
rule for damage calculation.
Section 6.3 elaborates on the second step in the process, being how to calculate the
expected lifetime from damage measurements. For this second step, a lot of choices
have to be made. The possibilities and their consequences are explained.
Moreover, the proposed methodology was applied on a fictional OWT using realistic
measured stress signals. This case study is extensively explained in Section 6.4.
Finally Section 6.5 concludes the chapter.
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6.1 Introduction

Being able to reconstruct the stress history at any location in the structure of an
offshore wind turbine is of big importance for a fatigue analysis. But the only
number a wind farm operator is truly interested in, is the (remaining) lifetime
of all (critical) locations in the structure. In this chapter the necessary steps
to translate a stress history, measured directly or reconstructed using e.g. the
techniques disclosed in Chapter 5, and the available SCADA data into a realistic
life time assessment are summarized.
The chapter will touch upon following topics:

• From stress history to fatigue damage

– Fatigue spectra

– The different stress concentration factors

– S-N curves and Miner’s rule

• From damage history to a fatigue life time estimate

The proposed strategies are applied to a case study of a fictional offshore wind
farm.

6.2 From stress history to fatigue damage

The first step to a full fatigue assessment of an offshore wind farm is the translation
of a stress history into a damage estimate. Either a deterministic or a probabilistic
approach can be followed here. A deterministic damage estimate quantifies how
distant a fatigue failure is. The found fatigue damage is a number ranging from 0
to 1, where zero implies no fatigue damage and 1 implies failure and consequently
end of life. A probabilistic damage estimate returns a likelihood the structure
failed due to fatigue. End of life is reached when the likelihood of failure has
reached a certain upper limit, e.g. 2, 3% as the design S-N curves suggest [87].
In the current research a deterministic strategy is followed, as this is still the
most common practice in industry and design. The steps required to translate a
stress history into a life time estimate are summarized in Figure 6.1. The first
steps from strain measurement to stresses in FA and SS direction are discussed in
Section 2.2.2. In this case the measured stresses in compass directions are solely
converted to stresses in FA and SS direction, independent of the exact headings.
However, in theory a fatigue assessment should be performed for each heading
(sector) individually. It is believed by reducing this to only FA and SS stress
signals and taking the most damaging of both, a conservative approach is followed.
Each step illustrated in Figure 6.1 starting from the stresses in Fore Aft and Side-
Side direction will be discussed in the following sections.

6.2.1 Cycle counting

The state-of-the-industry technique to calculate damage, discussed later in Sec-
tion 6.2.4, is based on the number of cycles combined with the stress range (or
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Figure 6.1: A simplified overview of the steps required to go from stress histories
to a fatigue damage estimate.[88]

amplitude) of these cycles. Therefore, the measured (or extrapolated) stress signal
should be reduced to a histogram, representing the number of cycles in predefined
stress ranges. A well-known method for cycle counting in literature is so-called
rainflow counting.
The principle is explained in [89] and illustrated by Figure 6.2. When plotting
the stress or strain signal on the x-axis and the time on the y-axis downwards, an
imaginary raindrop starts at the beginning of the signal and at the inside of every
peak and can fall down the signal to lower roofs. Half a cycle is counted every
time one of the following conditions is met:

• the raindrop comes opposite a maximum (minimum) higher (lower) than
where it started from. In Figure 6.2 the raindrop started at point 1, stops
at the opposite of point 5, since the strain value at point 5 is lower than the
value at point 1.

• the raindrop meets another raindrop from the roof above. In Figure 6.2 the
raindrop started at point 3 and stops at point 2’, since at that point the
raindrop that started at point 1 fell down.

Figure 6.2: An example to illustrate the concept of rainflow counting [89]
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(a) Non normalized Turbine 1 (b) Normalized Turbine 2

Figure 6.3: Exemplary fatigue spectra obtained after cycle counting the stress
histories of strain measurements at offshore wind turbines. The different colors
represent the different operational cases of the turbines. The normalization in (b)
provides the equivalent fatigue spectra when each case is present the same amount
of time. [91]

For this thesis, an existing toolbox WAFO [90], consisting of MATLAB code,
was used to perform the rainflow counting. The rainflow counting is performed on
the stress signal, both for fore-aft direction and side-side direction, based on the
turning points in the signal.
All measured stress cycles are distributed over 500 predefined bins, where the bin
centers were logarithmically spaced between 10 kPa and 1 GPa. The resulting
histogram is also referred to as a fatigue spectrum, as it represents the different
contributors to the final fatigue life.
Unique to the application in this research is that the measured fatigue spectra
are stored for every ten-minute timestamp. As such it is possible to link each
individual fatigue spectrum to the current condition of the turbine as is reflected
by the SCADA data. In Figure 6.3 two examples of the resulting fatigue spectra
are plotted with different colors indicating the different operational cases of the
turbine. The results reveal a considerable difference in the behavior of the turbine,
and thus the way it accumulates fatigue. E.g. in non-operational conditions (blue
and green) the number of very large cycles is very low compared to operational
cases (all other colors) as the thrust loading, responsible for the slow but large
cycles (see also Chapter 4), is negligible in non-operational conditions.

6.2.2 Stress extrapolation within the structure

A fatigue assessment of a wind turbine should include multiple locations within
the structure. Most valuable are the specific locations which are, according to
design, most fatigue sensitive. However, other locations could be more affected
by fatigue during the lifetime than expected. Unfortunately, mounting sensors at
all these locations is not cost-effective and often physically impossible or unfea-
sible. Therefore, the first step in a full lifetime assessment for a wind turbine is
the extrapolation of measurements done at easily accessible locations in the struc-
ture. This extrapolation can be done using the techniques described in Chapter 5.
However, as the research in this chapter ran in parallel to development of virtual
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sensing techniques a simplified but less accurate method was used in this chapter.
The stress signal observed at the sensor level is assumed to be the result of one
static load applied on the nacelle of the wind turbine (Fhub). In this case, the
bending moment (Mmeas) observed at the sensor location with a distance zsensor
from the hub can be extrapolated along the length of the structure using static ex-
trapolation as given by Equation 6.1, where Mext represents the bending moment
at the location of interest with distance zext to the hub.

Fhub =
Mmeas

zsensor
=
Mext

zext
(6.1)

The bending moment and stress are related to each other by Equation 6.2.
Here, the area moment of inertia Ic and the radius of where the stress in the
section is needed R are used. Knowing this relation, a factor (Stress Extrapolation
Factor) can be defined by which the measured stress signal should be multiplied
to obtain the extrapolated stress signal. This is given in Equation 6.3.

M = σ
Ic
R

(6.2)

SEF =
σext
σmeas

=
Mext

Mmeas

Rext
Ic,ext

Ic,sensor
Ri,sensor

=
zext
zsensor

Rext
Ri,sensor

Ic,sensor
Ic,ext

(6.3)

If available, one could choose to use an extrapolation factor based on the as
designed distribution of the bending moment along the structure instead of as-
suming a static extrapolation.

6.2.3 Safety and correction factors

The entire substructure of a wind turbine consists of a large number of specific
weld details that influence the local stress behavior and ultimately the fatigue
life. Rather than an in-depth assessment of each detail the current practice is
to use correction factors to account for the particularities of each weld detail.
In the following sections an overview of several relevant parameters for offshore
substructures on monopiles is provided. As well as a short discussion on the
developed framework to automatically generate the factors for any given geometry
of monopile.
The final outcome of all factors is the so-called Combined Safety factor (CSF). As
the safety factors differ for each weld detail the fatigue life of each detail is greatly
influenced by these CSF. Therefore the stress range associated to each detail is
multiplied with the corresponding CSF.



130 Chapter 6. Lifetime assessment of an instrumented turbine

Size Effect (SE)

The first safety factor serves to account for the difference in thickness of plates
between the test specimen used in the material fatigue testing and the actual
component. According to [92] the measured stress should be multiplied by SE
given in Equation 6.4, if the thickness of the actual component is larger than the
reference thickness tref of 25mm. In this equation the SE is provided from the
actual thickness t, through which a crack most likely will grow, and the thickness
exponent on fatigue strength k, given by the type of S-N curve.

SE =

(
t

tref

)k
(6.4)

In [93] an addition was made. In case of butt welds, often used in the manufac-
turing of the substructure of offshore wind turbines, the actual thickness t can be
replaced by an effective thickness teff . The effective thickness can be calculated
using the weld width Lt and the minimum wall thickness of both adjacent sections
tmin. Both of them should be expressed in mm. The exact values for the weld
width are specified for every weld in the design documents.

teff = min(14 + 0, 66Lt, t) (6.5)

For applications in offshore wind SE is typically larger than 1. As the wall
thicknesses used in offshore wind turbines are typically well above 25mm. The SE
larger than one reflects that due to more likely inclusions of defects in the thicker
walls fatigue is more likely to progress in thicker walls. The introduction of the
effective thickness, Equation. 6.5, resulted in a reduction of the SE.

In general the specific values of SE taken for the different welds of an OWT
substructure are specified in design documents. In case of a weld between two
sections with a different wall thickness, the smallest wall thickness is chosen to
calculate SE.

Stress Concentration Factor (SCF)

Changes in geometry or welded attachments can cause local stress hot spots in the
structure. Often fatigue cracks can initiate or propagate more easily due to these
local stress augmentation. To account for this additional local stress, the measured
(nominal) stress is multiplied with a stress concentration factor (SCF). Depending
on type of transition in the structure, the calculation of SCF can be done analyt-
ically or obtained from a finite element analysis. For a thickness transition or a
conical section, equations are suggested by [92]. The values for SCF applied for
every detail during design, obtained analytically or using a finite element model,
are typically also specified in the design documents. When available the values in
the design document are preferred for a fatigue assessment.

SCF Thickness transition
When the wall thickness of two adjacent tubular sections is not the same, a thick-
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ness transition is needed. This is illustrated by Figure 6.4. In general the transition
is made at the inside of the monopile, as opposed to the illustration.

(a) Cross section

(b) Axial section

Figure 6.4: Illustration of a thickness transition between two tubular sections with
a different thickness (modified) [92]

In this case, Equation 6.6 can be used to calculate the resulting stress concen-
tration factor. In this equation tmin and tmax represent respectively the smallest
and highest wall thickness, Ro the outer radius of the section, δt half of the dif-
ference in thickness (δt = tmax−tmin

2 ), δm a misalignment difference, δ0 the mis-
alignment inherent in the S-N data and L the length over which the transition
takes place. Often δm is taken equal to δ0, being 10% of t. However, newer design
take into account a misalignment difference of 3mm. This is specified in design
documents. Moreover, a thickness transition is usually performed at a ratio of 1:4.
This means L = 4 · (tmax− tmin). This ratio is also specified in design documents.
In practice, sometimes Equation 6.6 is simplified by taking 0 for α and 1,5 for
β. Both simplifications usually result in a higher value of SCF and thus lead to
additional conservatism in the results.

SCF = 1 +
6(δt + δm − δ0)

t

1

1 +
(
T
t

)β e−α
α =

1, 82L√
2Rot

1

1 +
(
T
t

)β
β = 1, 5− 1

log
(

2Ro
t

) +
3(

log
(

2Ro
t

))2

(6.6)

SCF Conical section
In a conical section (Figure 6.5) additional stresses are induced at any transition
between two sections with a different angle. These additional stresses are caused
by a higher concentration of stress flow lines at the inner side of a bend in the
material. This means, for a conical section, the additional stresses are at either the
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inner wall or the outer wall, depending on the upper or lower part of the conical
section. In Figure 6.5, the stress for the upper bend is concentrated at the outside
wall (where the inner side of the bend is located), while the stress for the lower
bend in concentrated at the inside wall.
In this case the stress concentration factor can be calculated using Equation 6.7,
where t represents the wall thickness and Ro the outer of the tubular adjacent
tubular section. Here, the wall thickness is assumed uniform over the conical
section and adjacent tubular sections, as it is usually the case for conical sections
in offshore wind turbine substructures. Using the simple rules of trigonometry,
the height of the section H and the difference in radius ∆Ro, tanα is calculated
(Equation 6.8).

SCF = 1 +
0, 6t
√

4Ro
t2

tanα (6.7)

tanα =
∆Ro
H

(6.8)

Figure 6.5: Illustration of a conical section in a monopile [92]

Material Safety Factor (MSF)

[94] suggests to use a material factor γm or material safety factor to account for
possible unfavorable deviations, uncertainties or differences between the actual
structure and the test specimen with respect to the resistance of the material.
In practice the value of MSF is determined during design based on the chosen
inspection strategy. When a value of 1 is chosen, checks for fatigue cracks are
required every 7 years for a designed fatigue life of 20 years. For a value of 1,15
and a designed fatigue life of 20 years, checks are needed every 13 years. In general,
a value of 1,25 is chosen, corresponding to no checks at all during the designed
lifetime of 20 years. The exact value of the material safety factor is specified for
every detail in the design documents of the monopile and transition piece.



6.2. From stress history to fatigue damage 133

Combined Safety Factor (CSF)

In the end the stress bin centers of the stress histogram are multiplied by the
combined safety factor. The combined safety factor consists of the multiplications
of all safety factors specified before. Equation 6.9 summarizes this.

CSF = SE · SCF ·MSF (6.9)

If the stress extrapolation within the structure is done using a factor, this factor
can be included in the combined safety factor as well.

6.2.4 Damage calculation

The state-of-the-industry damage calculation, as suggested by [92], is based on the
Palmgren-Miner rule, assuming linear cumulative damage. In this section we will
explain the Palmgren-Miner rule.

Using Palmgren-Miner Rule

From the Palmgren-Miner rule the accumulated fatigue damage D is obtained as
the sum of the ratios of occurred cycles ni over cycles to failure Ni for all occurred
stress ranges ∆σi. This is given by Equation 6.10.

D =

k∑
i=1

ni
Ni

(6.10)

The number of cycles to failure for a given stress range is defined by a S-N
curve. A S-N curve represents how many cycles N of a constant stress range ∆σ
a specimen can hold before failure. Examples of design S-N curves are given in
Figure 6.6

The choice for S-N curve is done based on, among others, the considered mate-
rial, the fabrication method and the expected inspection of the detail. Moreover a
distinction is made for the environment around each weld detail. Examples of such
environments are by air or water, with or without cathodic protection. Because
of the dependency to the environment, the specific S-N curve can differ from one
detail to another, even though they are geometrically identical. All the specific
S-N curves are specified in the design documents for every detail of the structure.
And in a correct fatigue assessment the lifetime of each weld needs to be calculated
using the corresponding S-N curve.
A basic S-N curve can be represented by Equation 6.11, where m represents the
negative inverse slope of the S-N curve in logarithmic axes and ā the intercept of
the design S-N curve with the N axis.

logN = logā−mlog∆σ (6.11)

For offshore applications bilinear S-N curves, as shown in Figure 6.6, are often
used. Here, the slope of the curve changes starting from a specified number of
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Figure 6.6: Illustration of several design S-N curves in air [87]

cycles, e.g. 107, as represented by Equation 6.12. Here, ā1 and m1 are always
defined, together with either ā2 or m2 or both.

logN =

{
logā1 −m1log∆σ if N 6 107

logā2 −m2log∆σ if N > 107
(6.12)

In case of bilinear S-N curves, the stress range associated with N = 107 is
calculated first. If necessary, the value for ā2 or m2 is calculated from the other
known parameters.
Afterwards, the number of critical cycles N is calculated for every bin of stress
cycles using Equation 6.12 together with the known parameters and the value for
the stress range, being the stress bin center.

From the selected S-N curve the damage estimate D is calculated using Equa-
tion 6.10. In a deterministic fatigue assessment it is considered that a turbine has
reached end-of-life when D equals one. This has led to the common misconception
that D equal to one implies the structure will collapse under fatigue. However,
the correct interpretation is, given the way S-N curves are established, that the
turbine has a 97,7% probability to survive as long as D does not exceed one. This
nuance makes it therefore perfectly possible to accumulate to a D well above 1
before actual failure. In a probabilistic fatigue assessment the probabilistic nature
of the S-N curve is considered.

S-N curves are defined based on fatigue tests on small-scale specimens in labo-
ratories. And the application of these S-N curves to structures the size of offshore
wind turbines has led to the introduction of the correction factors discussed in
Section. 6.2.3. However, a growing community is accepting that the original S-N
curves are outdated for both the scale of offshore wind and state-of-the-art fabrica-
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tion methodologies that are currently being used. Given the importance of fatigue
progression in the final cost of the foundation, recent research projects have started
to re-evaluate the original S-N curves for monopiles (e.g. SLIC project [95]) and
the more complex jacket nodes (e.g. JaCo project [96]).
An alternative strategy is to step away entirely from the S-N curves and the
Palmgren-Miner rule and evaluate fatigue life using crack propagation models and
the maximum allowable crack size (cfr. the British Standard BS6835).

6.3 From damage history to a fatigue life estimate

The deterministic approach to translate these damage estimates into a (residual)
lifetime (RUL), is to determine at what point in time the accumulated damage
D reaches the critical value of 1. Therefore the easiest way to perform a lifetime
calculation using an actual measurement campaign is simply by extrapolating the
measured damage Dm over time as done in Equation 6.13.

RUL =
1

Dm
· Periodmeasured (6.13)

In essence, if the accumulated damage Dm over a measurement period of one
year equals 0,05, then the resulting RUL is 20 years. The inherent assumption in
this extrapolation is the continuity of the environmental and operational condi-
tions. Or in other words, by performing the extrapolation as in Equation 6.13 two
main assumptions are made. Firstly, one assumes the environmental conditions
as seen during the measurement campaign are fully representative for the entire
expected lifetime of the wind turbine. The other assumption is basically the same
but for the operational conditions of the turbine. This means the percentage of
time the turbine was parked or malfunctioning, and the corresponding environ-
mental conditions, during the measurement campaign is the same as during the
entire lifetime. A similar assumption is made for start and stop events or de-rating
periods. Unfortunately, this assumption only holds if end of life is near and thus if
the measurement period is very long, e.g. close to 20 years. In reality, such a long
measurement period is not available for offshore wind turbines. Therefore more
advanced extrapolation methods are needed.

A possible extrapolation method is proposed in Figure 6.7. This method con-
sists of two main parts: the damage binning and the damage extrapolation, respec-
tively elaborated upon in Section 6.3.1 and Section 6.3.2. For both stages, some
choices have to be made. These choices are indicated in diamonds in Figure 6.7.
The required data for the next step is indicated in circles and the needed actions
are indicated in squares. All steps are explained in more detail in the following
two sections.
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Figure 6.7: A simplified overview to extrapolate fatigue data into a fatigue life
estimate, with indication of several choices that are part of the procedure, modified
from [88].

6.3.1 Construction of the damage table

To be able to perform an extrapolation in time considering possible different con-
ditions, the measured damage is linked with specific conditions. To do this, the
damage is calculated as discussed in Section 6.2, for each time frame of 10 minutes.
The damage obtained for every 10 minute interval can be linked to environmental
conditions, such as (a combination of) wind speed, turbulence intensity or wave
period. This is done by binning of the damage data based on the required envi-
ronmental parameters. Which environmental parameters are of interest is the first
choice that has to be made during the process. The final binning of the damage
data results in a damage table. However, to calculate a lifetime one value for every
bin is required instead of all damages measured during the requested conditions.
Here, the appropriate metric has to be chosen to reduce the damage table. The
next step consists in filling the empty bins of the damage table. This is the third
choice to be made. Once the empty bins are filled, damage measurements related
to environmental conditions are obtained. Finally, the behavior of the turbine
differs significantly for different operational states. This difference in behavior
results in a different fatigue spectrum (cfr. Figure 6.3) and a different damage
accumulation as well. Therefore periods of standstill, de-rating or intervals during
which a rotor start or stop occurred, can be treated separately.
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More information about all required choices is given in the next paragraphs.

Parameters in the damage table

Several environmental parameters influence the damage accumulation of the sub-
structure of a wind turbine. In general, the obtained values for damage have a
wide range. Therefore damage is often hard to interpret on a linear scale. As a
workaround, often the Damage Equivalent Load (DEL) is used instead of damage.
In essence, the DEL is obtained by assuming a hypothetical load signal with a fixed
number of cycles and a fixed amplitude. When applying this load signal on the
structure, it would cause exactly the same damage as the measured (more com-
plex) stress or load history. The DEL represents the value of the fixed amplitude
needed to obtain the same damage. More information can be found in [97] and
[98]. To visualize the correlation between damage and environmental parameters,
the DEL might be favored over the measured damage. However, since the resulting
damages were often only an intermediate result, the damage is usually plotted on
a logarithmic scale instead of the DEL on a linear scale in the remainder of this
thesis.
As one can imagine, the substructure of an OWT will fatigue more when wind
speeds are higher. This is shown in Figure 6.8 for two different wind turbines.

Figure 6.8: The normalized Damage Equivalent Load measured at two OWTs,
shown versus wind speed. The DEL clearly increases for an increasing wind speed.
The crosses an full line show the median values for different wind speed bins, while
the blue and orange zones show the 10th until 90th percentile of the data within
the different bins.
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In [98], the influence of several parameters on the damage accumulation of sub-
structures of OWTs is discussed. Among these parameters, some environmental
parameters are considered as well. Here, it is shown the wind direction influences
the DEL (Figure 6.9). The wind directions for which a higher damage was ob-
tained can be linked with wind directions for which the considered wind turbine is
standing in the wakes of other wind turbines in the farm. The wakes of the other
turbines will cause a higher turbulence intensity at the considered turbine. There-
fore, another possibility to take wakes into account is to consider the turbulence
intensity measured at the turbine instead of the wind direction. By using turbu-
lence intensity instead of wind direction, the damage in and out of wake at one
turbine can be compared and extrapolated easier to the damage at another turbine.

Figure 6.9: The normalized Damage Equivalent Load measured at an OWT, shown
versus wind speed and wind direction. For the wind directions between 80 and
200 degrees, no other turbines are causing wake [98].

Moreover, a relation between damage and wave height is shown in Figure 6.10
[98]. In the figure, only data in a small interval of wind speeds is shown, since
wave height and wind speed are strongly correlated to each other.

For the existing offshore wind farms, wind speed is often highly correlated to
damage. For that reason, it will always be one of the environmental parameters
considered in this thesis for any extrapolation based on environmental conditions.
As suggested by [34], a standard bin size of 1m/s is taken. Only for wind speeds
below 1, 5m/s a bin size of 1, 5m/s is taken and for wind speeds between 22, 5m/s
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Figure 6.10: The normalized Damage Equivalent Load measured at an OWT,
shown versus the significant wave height. The crosses and full line show the median
values for different wave height bins, while the blue zone and the orange triangles
show the 10th until 90th percentile of the data. Only data for a small interval of
wind speed is shown [98].

and 26, 5m/s the bin size is increased to 2m/s. Moreover the highest bin contains
all data points for which the wind speed exceeded 26, 5m/s.
Other parameters of interest are turbulence intensity and wave height, which might
be combined with wind speed. These parameters often depend on wind speed
themselves, as illustrated in Figure 6.11 by the blue dots. Because of this correla-
tion, it is chosen to define the bin borders for these parameters separately for each
wind speed bin. For both parameters, 4 different bins are created for each wind
speed bin based on the 25th, 50th and 75th percentile. The lowest bin border is
chosen well below the minimum value to include all data points. The highest bin
border is chosen well above the maximum value for the same reason. The values
of 0 and Inf can be chosen respectively. The bin borders are shown by the green
lines in Figure 6.11.

In case of turbulence intensity, not all data points are shown in the figure
because of the very high value obtained for low wind speeds. It was chosen to
focus on the data points with a higher value since these are far more important in
terms of damage and fatigue.
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(a) Turbulence Intensity (b) Wave Height

Figure 6.11: Some environmental parameters versus wind speed. The bin borders
for these environmental parameters depend on the value of the wind speed, as
shown by the green lines.

An illustration of a resulting damage table will be given and discussed upon in
Section 6.4.3.

On reducing the damage table

Up to now, each bin contains all damage values measured during the environ-
mental conditions, as specified by the bin borders. To calculate the lifetime in a
deterministic way, a damage table is needed where one damage value Di is given
for each possible combination of environmental conditions. This damage repre-
sents the damage the turbine would accumulate if it would operate an entire year
in these environmental conditions. An obvious choice might be to take the mean
value of damage measurements in one bin. However, any statistical metric can be
used to obtain one value, e.g. the 75th or 90th percentile. These three possibilities
are shown in Figure 6.12 by the full yellow, dashed purple and dotted line red line
respectively.

It is shown in Figure 6.13 and [88] that for long measurement periods, the
results using the 90th percentile are very conservative. Therefore, depending on
how conservative the results should be and the length of the measurement period,
the appropriate metric is chosen.

For the remainder of this thesis, the mean value was chosen to reduce the dam-
age table.

Should one be interested in a probabilistic fatigue assessment one could also
determine the damage distribution per bin and calculate damage accumulation
using these distributions instead [99].
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Figure 6.12: Damage distributions in each bin of damage table, composed based
on wind speed and turbulence intensity. The results for several wind speed bins
(number 8 to 12) but only one turbulence intensity bin are shown. The distribu-
tions are indicated using box plots. The mean value, the 75th percentile and the
90th percentile of each bin are indicated by respectively the full yellow, dashed
purple and dotted red line.

(a) Low wind speeds (b) High wind speeds

Figure 6.13: Convergence of normalized damage calculated using the mean value
(µ), the 75th percentile (D75) and the 90th percentile (D90) [88]
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Filling empty bins

As explained in previous sections, the damage table can be composed based on
several (combinations of) environmental parameters. Ideally the environmental
parameters and their bin sizes and limits are chosen in such a way each bin contains
enough damage data. A guideline for the minimum amount of damage data needed
in each bin to obtain a representative damage table is given by [34]. In reality
however it is possible and even very likely some combinations of environmental
conditions did not occur during the measurement period. In that case empty bins
should be filled with a well considered value. Depending on the availability of the
needed information, the filling can be based on design documents or data-driven.
If design documents contain information about the load case tables obtained by
simulations, those values can be used to fill up the empty bins in the damage
table. On the other hand, the empty bins can be filled based on measured data
as well. It is the latter option that is executed for this thesis. Each empty bin is
filled with the maximum value found in the neighboring bins. This is shown in
Figure 6.14, where the two transparent bins initially were empty. In both cases,
the neighboring bins are indicated with purple or orange lines and the highest
damage of these is copied to the empty bin.

Figure 6.14: Conceptual illustration on how empty bins were filled. The maximum
value found in the surrounding bins of the damage table is used.

By filling up the damage table in such a way, a kind of artificial damage data
is added to the damage table. This can lead to a bias in resulting lifetime, as
illustrated in Figure 6.15. This figure shows the error between the 1st or 5th
percentile of the resulting lifetime distribution and the mean value of the lifetime
distribution, obtained by extrapolation based on wind speed only. For small mea-
surement periods (shown on the x-axis), a higher error is obtained in case of 2d
extrapolation (i.e. based on two environmental parameters) with respect to 1d ex-
trapolation (i.e. based on one environmental parameter). This is explained by the
increased number of empty bins for 2d extrapolation compared to 1d extrapolation.
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Figure 6.15: Error of the 1st or 5th percentile of the lifetime distributions calcu-
lated using different dimensionality of damage tables, 0d, 1d or 2d, with respect
to the mean value of the lifetime distribution using wind speed only.[88]

To conclude, if a damage table with a lot of empty bins is obtained, filling up
empty bins can not always be done in a realistic way. Therefore one can reconsider
the selected binning table. This can be done by reducing the dimensionality (e.g.
the number of selected environmental parameters) or adjusting the bin borders.

Operational conditions

As shown by the fatigue spectra in Figure 6.3, the measured stress cycles differ
significantly between standstill and operating conditions. In this case, also the
accumulated damage will differ quite a lot. The same is true for events such as a
rotor stop.
Due to these differences, multiple damage tables will be composed in this thesis:
one for operational conditions, one for standstill conditions and one for rotor stops.

6.3.2 Translating the damage table into RUL

Once the damage table is composed, this damage table should be multiplied by
the needed probability distributions Pr associated with each of the bin properties.
The probability distribution can be the one as used in design or a histogram
composed using measurements from several years. If the latter is used, one should
take care the probability function is based on a much longer measurement period
than the one used to calculate the damage table. If not, the resulting lifetime will
approximate the 0d damage extrapolation as given by Equation 6.13. On the other
hand, the as designed probability distribution might not be correct either, since
a validation is not existent. The probability distribution in design might also
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be conservative, since it usually takes into account some rare storm conditions
as well. Unfortunately, this cannot be demonstrated with real-life data due to
confidentiality reasons.

By summing up the result, Dextrapolated is obtained. This is summarized by
Equation 6.14.

Dextrapolated =
∑

i∈ECbins

Di · Pr,i (6.14)

To account for the difference in damage accumulation during operating and
standstill conditions, the same procedure can be repeated twice, once with op-
erating data and once with non-operating data. A weighted average (based on
the expected ratio of operation - standstill) of the resulting yearly damages gives
an indication of yearly damage under the required environmental and operational
conditions.

Finally, Equation 6.13 can be used again to calculate the lifetime, by replacing
Dmeasured by Dextrapolated and taking Periodmeasured as one year.

6.3.3 Reliability of lifetime calculation

For the last part of this analysis, a look is taken at the uncertainty of the lifetime
calculation. To do this, the concept of sample-based bootstrapping [100] is applied
on the calculations. Therefore, the lifetime calculation is repeated multiple times
to give an estimate of the variation of the lifetime. Here, not all available measure-
ments Ni in a bin i are used to calculate the yearly damage for that bin. Instead
the same number of measurements, Ni, is picked randomly out of the available
measurements, where the same measurement can be picked more than once. This
random combination of measurements is then used to calculate the yearly damage
for that bin. This is illustrated in Figure 6.16.

Figure 6.16: Conceptual illustration of sample-based bootstrapping (modified from
[101])

In this analysis, this procedure is repeated Nb times for every bin, resulting in
Nb damage tables and finally in Nb different values for lifetime. These resulting
distributions can then be plotted for each detail in the structure. As such, an
uncertainty on the final resulting lifetime is obtained.
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6.4 Case study

In this final section we will use the geometry of a fictional offshore wind turbine on
a monopile foundation and normalized measurements from one of the monitoring
campaigns to give an example of the full work flow for fatigue life estimation on a
single turbine. The fictional OWT was based on the geometry of the OWT given
in [102]. Results will be analyzed to discuss some of the elements raised in earlier
sections.

6.4.1 Geometry, safety factors and applied S-N curves

During this research a framework
was developed that takes the geom-
etry of an offshore wind turbine as
an input and automatically gener-
ates a table of expected safety and
correction factors. Additionally it
automatically proposes a specific
S-N curve for each weld based on
the height of the weld. This table
can then later be updated for any
particular detail, not clear from the
original geometry, such as secondary
attachments like boat-landings and
ladders. Moreover, the proposed
values for safety factors can be
adjusted if a difference with the
design documents is found. The
same is true for the proposed S-N
curves. It might be some welds were
treated by grinding or shot peening
during construction, to reduce the
number of defects in the material.
In that case, typically a different
S-N curve is used to account for the
effect on the fatigue of the weld by
the weld treatment.

Figure 6.18 and Table 6.1 show the
geometry as taken from [102]. In Ta-
bles 6.2 and 6.3 the output of the de-
veloped script is shown.

(a) Transition Piece

(b) Monopile

Figure 6.18: Illustration of the geometry of
a fictional OWT (modified) [102]
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Table 6.1: The geometry details of a fictional OWT, inspired by [102]

Height Section Height Outer Diameter WT
(m), w.r.t. LAT (mm) (mm) (mm)
Transition Piece
14,1 0 4364 45
12,15 1950 4740 45
9,35 2800 4740 45
7,3 2050 4740 45
4,7 2600 4740 45
1,9 2800 4740 55
-0,75 2650 4740 55
-3,75 3000 4740 55
-7,1 3350 4740 45
Monopile
1,5 0 4500 65
-1,5 3000 4500 65
-4,5 3000 4500 65
-7 2500 4500 65
-10 3000 4500 65
-13 3000 4500 65
-15,6 2600 4500 70
-18,6 3000 4500 75
-21,6 3000 4500 65
-24,6 3000 4500 65
-27 2400 4500 65
-30 3000 4500 65
-33 3000 4500 65
-36 3000 4500 60
-38,3 2300 4500 60
-41,3 3000 4500 60
-44,3 3000 4500 60
-46,7 2400 4500 60
-49,7 3000 4500 60
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Table 6.2: Fatigue details of the monopile of a fictional OWT, as calculated by
the developed framework during this thesis.

Height Label Structure SNCurve SCF SE MSF
Monopile
-1,5 CW02-O MP DNV-D-W 1 1,211 1,25
-1,5 CW02-I MP DNV-D-W 1 1,211 1,25
-4,5 CW04-O MP DNV-D-W 1 1,211 1,25
-4,5 CW04-I MP DNV-D-W 1 1,211 1,25
-7 CW06-O MP DNV-D-W 1 1,211 1,25
-7 CW06-I MP DNV-D-W 1 1,211 1,25
-10 CW08-O MP DNV-D-W 1 1,211 1,25
-10 CW08-I MP DNV-D-W 1 1,211 1,25
-13 CW10-O MP DNV-D-W 1 1,211 1,25
-13 CW10-I MP DNV-D-W 1 1,211 1,25
-15,6 CW12-O MP DNV-D-W 1 1,229 1,25
-15,6 CW12-I MP DNV-D-W 1 1,229 1,25
-18,6 CW14-O MP DNV-D-W 1 1,211 1,25
-18,6 CW14-I MP DNV-D-W 1,059 1,211 1,25
-21,6 CW16-O MP DNV-D-W 1 1,211 1,25
-21,6 CW16-I MP DNV-D-W 1 1,211 1,25
-24,6 CW18-O MP DNV-D-W 1 1,211 1,25
-24,6 CW18-I MP DNV-D-W 1 1,211 1,25
-27 CW20-O MP DNV-D-W 1 1,211 1,25
-27 CW20-I MP DNV-D-W 1 1,211 1,25
-30 CW22-O MP DNV-D-W 1 1,211 1,25
-30 CW22-I MP DNV-D-W 1 1,211 1,25
-33 CW24-O MP DNV-D-W 1 1,191 1,25
-33 CW24-I MP DNV-D-W 1 1,191 1,25
-36 CW26-O MP DNV-D-W 1 1,191 1,25
-36 CW26-I MP DNV-D-W 1 1,191 1,25
-38,3 CW28-O MP DNV-D-W 1 1,191 1,25
-38,3 CW28-I MP DNV-D-W 1 1,191 1,25
-41,3 CW30-O MP DNV-D-W 1 1,191 1,25
-41,3 CW30-I MP DNV-D-W 1 1,191 1,25
-44,3 CW32-O MP DNV-D-W 1 1,191 1,25
-44,3 CW32-I MP DNV-D-W 1 1,191 1,25
-46,7 CW34-O MP DNV-D-W 1 1,191 1,25
-46,7 CW34-I MP DNV-D-W 1 1,191 1,25
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Table 6.3: Fatigue details of the transition piece of a fictional OWT, as calculated
by the developed framework during this thesis.

Height Label Structure SNCurve SCF SE MSF
Transition Piece
14,1 CW01-O TP DNV-D-A 1 1,125 1,25
14,1 CW01-I TP DNV-D-A 1 1,125 1,25
12,15 CW03-O TP DNV-D-A 1 1,125 1,25
12,15 CW03-I TP DNV-D-A 1,84 1,125 1,25
9,35 CW05-O TP DNV-D-A 1 1,125 1,25
9,35 CW05-I TP DNV-D-A 1 1,125 1,25
7,3 CW07-O TP DNV-D-A 1 1,125 1,25
7,3 CW07-I TP DNV-D-A 1 1,125 1,25
4,7 CW09-O TP DNV-D-W 1 1,125 1,25
4,7 CW09-I TP DNV-D-W 1,187 1,125 1,25
3,3 BL01-O TP DNV-D-W 2 1,2 1,25
1,9 CW11-O TP DNV-D-W 1 1,171 1,25
1,9 CW11-I TP DNV-D-W 1 1,171 1,25
-0,75 CW13-O TP DNV-D-W 1 1,171 1,25
-0,75 CW13-I TP DNV-D-W 1 1,171 1,25
-3,75 CW15-O TP DNV-D-W 1 1,125 1,25
-3,75 CW15-I TP DNV-D-W 1,187 1,125 1,25

With the developed framework all relevant parameters are stored and can later
be used to provide a correct estimate of fatigue life, respecting all structural details
of the considered substructure.

6.4.2 Measurements

To illustrate the given approach for a lifetime assessment, it is applied using data
from an offshore wind turbine, installed on a monopile. It is shown by [88] a
minimum period of 9 months is needed to obtain reliable lifetime results. Therefore
a measurement period of one year is taken. During this period, three types of
data are available. First of all strain sensors at the interface between tower and
transition piece are used to calculate the fore-aft and side-side stress signals. The
calculations needed for this transition are explained in Section 2.2.2. In practice,
cycle counting in performed on both FA and SS stress signal. Afterwards, damage
is calculated using the maximum number of cycles counted among both FA and
SS for each stress range bin. This strategy introduces an additional conservatism
since it assumes all damage is accumulated in the same direction and thus at the
same location along the circumference of the weld.
Moreover a subset of 10 minute statistics of SCADA parameters and meteorological
data representing wave conditions is available for slightly less than seven years.
The subset contains wind speed (mean value and standard deviation) and wind
direction. Based on the mean value and the standard deviation of the wind speed,
the turbulence intensity can be calculated using Equation 6.15.
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TI =
sV
V̄

(6.15)

All available SCADA was filtered first to remove erroneous data. All values
lower than a predefined minimum value or higher than a predefined maximum
value were excluded. The chosen set of criteria is given in Table 6.4 and reflect
improbable or impossible values for SCADA. Moreover to exclude one time outliers,
all values xi for which all expressions in Equations 6.16, where p is a predefined
percentage and T a predefined threshold value, are fulfilled are excluded too. The
values chosen for p and T are given for each parameter in Table 6.4.

∣∣∣∣xi − xi−1 + xi−2

2

∣∣∣∣ > p · xi∣∣∣∣xi − xi+1 + xi+2

2

∣∣∣∣ > p · xi∣∣∣∣xi − xi−1 + xi−2

2

∣∣∣∣ > T∣∣∣∣xi − xi+1 + xi+2

2

∣∣∣∣ > T

(6.16)

Table 6.4: Predefined values for different SCADA parameters during filtering

wind speed (m/s) TI (%) wind direction (◦)
absolute minimum 0 2 -360
absolute maximum 50 999 360
p (%) 100 100 0
T 5 20 999

6.4.3 Results

While performing a lifetime assessment, a lot of choices have to be made. For some
of them, one can rely on the design documents. For example the values for several
safety factors or the choice of S-N curves. To illustrate the effect of different S-N
curves and a different value for the combined safety factor (CSF), the lifetime is
calculated for all welds of the substructure of the fictional OWT. The calculation
is done using a damage table composed with operational data only and binned
based on wind speed only. All factors are applied as specified in Section 6.4.1,
together with a static extrapolation factor to account for the difference in bending
moment according to the exact location of the weld. Moreover, the S-N curve as
specified in Section 6.4.1 is used for every detail in the damage calculation. The
extrapolation in time is performed based on a wind speed distribution as measured
over almost 7 years.
Sine the resulting estimates of lifetime are purely for illustration, they are nor-
malized with respect to the resulting lifetime estimate of the weld closest to the
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sensor location (the inside weld of CW01).
By only using measurements under normal operating conditions, the assumption
is made the turbine will operate its entire lifetime under normal operating condi-
tions, without one rotor stop or one second of standstill. Off course, this is not true
in reality. The method can be easily extended to multiple operating conditions,
as discussed later in this section.
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Figure 6.20: Lifetime assessment for all weld
details on a fictional OWT, based on an ex-
trapolation using wind speed only

In general, it can be observed
that the expected lifetime of the
outer welds (illustrated in green
in Figure 6.20) is slightly lower
than the expected lifetime of the
inner welds (illustrated in blue in
Figure 6.20). This is because of the
slightly higher value for the static
extrapolation factor of the stress.
Since the radius of the location of
interest Rext in case of outer welds
is a little higher than for inner
welds, the SEF is slightly increased
(Equation 6.3). An increased stress
range causes an increased damage
and a lower expected lifetime.
All exceptions for which the ex-
pected lifetime of the inner weld
is lower than for the outer weld
can be explained by a significant
thickness transition at the inside
of the structure (CW09, CW15
and CW14) or a conical section
(CW03).
Overall, the effect of a difference
in distance to the hub on the
SEF and on the lifetime can be
easily observed. An increase in
SEF due to an increasing zext
(Equation 6.3), resulting in an
increased stress range and thus a
higher damage and lower lifetime
expectation can be observed for
all consecutive welds with the
same cross section and same CSF.
Examples of these are CW02 to
CW10, CW16 to CW22 and CW24
to CW34.
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Some salient differences in expected lifetime can be observed. The expected
lifetime for the top weld (CW01) is different because of the smaller diameter with
respect to the other welds of the transition piece. This difference in diameter will
lead to a smaller Ic,ext (Equation 2.8) and thus a higher SEF (Equation 6.3) and
lower lifetime expectation.
Usually a change in wall thickness can explain some jumps in expected lifetime as
well. For example CW11, CW13, CW12 and CW22 have higher wall thicknesses
than neighboring welds. These higher wall thicknesses will lead to a higher value
for size effect (Equation 6.4), which would lead to lower lifetime expectations.
However, a higher wall thickness also causes a higher Ic,ext (Equation 2.8) and
thus a decrease for the SEF (Equation 6.3). The decrease in SEF is usually bigger
than the increase in SE, which eventually will lead to a higher expected lifetime.
The lowest estimate for expected lifetime can be found for BL01. This is explained
by the highest value for CSF for this boat landing stub weld.
When looking at the difference between the fatigue characteristics of the outer
welds of CW07 and CW09, the main difference would be a different S-N curve
(i.e. DNV-D-A and DNV-D-W respectively) except for the difference in SEF.
Results suggest the role of the SEF is more dominant than the change in S-N
curve. This was confirmed when the expected lifetime for the outer weld of CW09
was calculated with the same values for safety factors and extrapolation factor but
by using DNV-D-A as S-N curve instead of the proposed S-N curve, DNV-D-W.
The resulting lifetime distribution for the different S-N curve was almost exactly
the same. Less than 1 % difference in median expected lifetime was obtained.

Other choices in a lifetime assessment often depend on the availability of the
needed information. For example, if no load measurements are available, one
could use the as designed load tables, giving the expected load for each specific
operational state. However, the as designed load tables are usually not publicly
available. Often they’re even not available for the operators or not sufficiently
detailed.
The most important choice in this section is how the extrapolation over time will
be performed. And more particularly, based on which parameters and operational
conditions. In general, the more complex the choices and combinations, the closer
to reality the results should be in theory if the measurement period is long enough.
However, more problems and limitations pop up in practice.
The required choices were already introduced in Section 6.3. The remainder of
this section will focus on four choices in particular. The first one deals with the
dimensionality of the damage table. The second one compares multiple environ-
mental parameters to base the probability distribution on. The third compares
the division in multiple operational conditions. And the last one is whether to use
the as designed probabilities or data-based probabilities. For the simplicity of the
plots, it is chosen to only plot the median (indicated by the vertical line in the
middle of the box of the boxplots) for expected lifetime of the outer welds in most
of the following figures.
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On the dimensionality of the damage table

The choices made for the extrapolation decide the complexity of the load case ta-
ble. In other words, the more environmental parameters chosen for the probability
distribution, the more bins the measured damages should be divided in. And thus
the more likely some of these bins will not have sufficient data points in them.
In the case a bin remains empty, a (conservative) approach is followed by taking
the highest damage in the neighboring bins (Figure 6.14), which is not necessarily
close to the actual damage.
Moreover, the more bins, the more the damage calculation will be prone for out-
liers. Since less data points are available in each bin, outliers will have a higher
influence on the calculated mean in the bins.
In this section, results for lifetime based on multiple damage tables with different
dimensions are compared. To obtain these results, all available data was used,
including parked conditions and rotor stops. In total 4 different approaches are
compared. Two of them are only extrapolated in time, without any binning based
on environmental conditions, both called 0d extrapolation. The third, called 1d
extrapolation, uses one environmental parameter, wind speed, to extrapolate in
time. Finally the last, called 2d extrapolation, uses two environmental parameters,
wind speed and turbulence intensity.
For the first 0d extrapolation, the damage accumulated during one year is calcu-
lated based on the entire stress signal of that year. The resulting damage is then
transformed in lifetime using Equation 6.13. This means no bootstrapping was
performed. Moreover, by using this approach it is impossible to split up different
operating conditions, such as operational, parked or rotor stop.
The second 0d extrapolation however was performed based on accumulated dam-
age calculated each 10 minutes. Afterwards, only bootstrapping was performed on
all data without binning it first. The main advantage of this approach is that the
data could be split up first based on operating conditions. This approach is called
0d BTS in the remainder of the section. If for the construction of the damage
table and for the calculation of the environmental distribution exactly the same
data were chosen, the resulting expected lifetime would essentially be the same as
this 0d BTS extrapolation.
The 1d and 2d extrapolation is obtained by binning all damage data first based on
wind speed only or wind speed and turbulence intensity respectively. The extrap-
olation in time is based on environmental distributions as measured over almost 7
years.
Figure 6.21 shows the results for both 0d extrapolations, 0d and 0d BTS, in blue
and green respectively. The results for the 1d extrapolation are shown in orange.
Finally, the results for the 2d extrapolation are shown in purple.

A rather big difference can be observed between the two 0d extrapolations.
Two differences between the two approaches can be identified: signal splitting and
bootstrapping. During bootstrapping, the random choice of data points will influ-
ence the resulting lifetime for that particular bootstrap. The environmental and
operational distribution of chosen data points will probably differ from the general
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distribution of the entire dataset. Moreover, it is possible a higher percentage data
points with a high damage is chosen. The same is true for data points with a low
damage. It is assumed however that the median value of the resulting lifetime
distribution represents a lifetime estimate based on the same environmental and
operational distribution as the entire data set. Moreover no over- or underestima-
tion of more or less damaging data points is assumed to be present in the median
value of the lifetime distribution. Therefore it is believed the distributions used
for both 0d extrapolations are exactly the same.

(a) Median value of the resulting lifetime distribution (in logarithmic scale) for all outer
welds of the substructure (TP in circles and MP in squares)
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Figure 6.21: Expected lifetime for outer welds of the substructure, extrapolated
using a data-based environmental distributions if required. The lifetime was ob-
tained using different damage tables with different dimensions: 0d in blue, 0d BTS
in green, 1d in orange and 2d in purple.

This means the main difference between the two extrapolations is the division
of the entire signal into smaller signals of 10 minutes each. Splitting the signal
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causes a lot of damage to be missed if the obtained damage for each smaller signal
is just added. The very slow cycles, with periods over 5 minutes, are missed.
However, these cycles are usually very big and still induce a lot of damage. This
explains the difference in lifetime estimates. Although this is a big drawback of the
binning methodology of damages, the advantages of linking damage to operating
and environmental conditions still outweigh this loss of information. However, a
compensation for this loss of damage should be included in the future. In case one
is only interested in the accumulated damage over the past time, the 1s SCADA
data can be a solution. The slow cycles are induced by variations in wind, which
are captured by the SCADA data. Another workaround could be to store the
minimum and maximum stress recorded during each 10min interval and perform
an additional cycle count on the concatenation of these.

To compare the impact of including environmental parameters in the lifetime
extrapolation, the comparison will be made with respect to 0d BTS extrapolation.
Figure 6.21 shows the 0d BTS extrapolation result in lower accumulated dam-
age and higher expected lifetimes than the extrapolations based on environmental
conditions. This is because the environmental conditions seen during the mea-
surement period were less damaging than expected for the entire lifetime. This
difference is illustrated by Figure 6.22.

Here, the extrapolated damage is shown
for 0d BTS and 1d extrapolation as a
stacked bar. Each colored bar in the
stacked bars represent the contribution
to the extrapolated damage of one wind
speed bin. This contribution is the prod-
uct of the averaged measured damage for
that wind speed bin and the probabil-
ity of occurrence of that wind speed bin.
The average measured damage used is
calculated at the sensor location, using
the DNV-D-A S-N curve, the value for
SE as calculated by Equation 6.4, 1,25
as MSF and 1 for SCF. The probability
of occurrence for the 0d BTS extrapola-
tion is the measured probability during
the measurement period. As both dam-
age extrapolations are based on a dam-
age table composed for exactly the same
period, both damage tables are exactly
the same. The only difference between
both extrapolations is thus the environ-
mental probability.
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Figure 6.22: Extrapolated damage dur-
ing one year for 0d BTS and 1d extrap-
olation. The contribution of each wind
speed bin is shown by a different color.
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It can be seen that for wind speeds lower than 4m/s, more extrapolated damage
is accumulated for the 0d BTS extrapolation, whereas for all higher wind speeds
the extrapolated damage of the 1d extrapolation is clearly higher. This is caused
by a higher probability of higher wind speeds during the extrapolation period than
the measurement period. Or in other words, because the measurement period was
a gentle period with respect to the expectation for the entire lifetime.

The 2d extrapolation results in even lower lifetimes than the 1d extrapolation.
The reason for this can be two-folded. Firstly, again the difference between seen
and expected environmental conditions will influence this extrapolation.

This effect is illustrated by Fig-
ure 6.23, where the extrapolated
damage for each turbulence intensity
bin within one wind speed bin is
shown for both 1d and 2d extrapo-
lation. As for the 1d extrapolation,
no distinction is made for expected
turbulence intensity during the
turbine’s lifetime, the environmen-
tal probability utilized to obtain
the extrapolated damage is the as
measured during the measurement
period. Since again the damage
table used for both extrapolations is
exactly the same, the only difference
between both extrapolations is the
environmental probabilities. It is
clear that during the measurement
period the environmental conditions
were dominated by low turbulence
intensity. However, given the clear
difference in accumulated damage for
the 2d extrapolation, this is not what
is expected for the entire lifetime of
the turbine. Although this is only
demonstrated for one wind speed bin,
it is valid for most wind speed bins
higher than 5m/s.
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Figure 6.23: Extrapolated damage during
one year for 1d and 2d extrapolation, for
one specific wind speed bin. The contri-
bution of each turbulence intensity bin is
shown by a different color.

Moreover, filling up empty bins and the higher dependence of average dam-
age bin values on outliers can cause additional conservatism in the extrapolation
leading to lower expected lifetimes.
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Parameters in the damage table

Several environmental parameters influence the measured damage, as shown in
Section 6.3.1. This can already be demonstrated by looking at the obtained dam-
age distributions in each bin of multiple damage tables. Again, damages shown
in the distribution are calculated at the sensor location, using the DNV-D-A S-
N curve, the value for SE as calculated by Equation 6.4, 1,25 as MSF and 1
for SCF. Figure 6.24 shows an example of a damage table, composed based on
wind speed only and using only operational data. One can observe an increased
damage around 12 m/s due to the maximum thrust loading. For very high wind
speeds, the damage is again increased. This increase can be explained in multiple
ways. Higher dynamic loads caused by higher wave heights usually occur only for
high wind speeds. Moreover higher wind speeds also induce higher frequent wind
turbulence, which can excite the first resonance frequency more.
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Figure 6.24: Damage distributions in each bin of the damage table, composed
based on wind speed only. The distributions are indicated using box plots.

Apart from the wind speed, also the waves and the wake flows in the farm
have an influence. Therefore, composing a damage table based on wind speed and
turbulence intensity can have an added value. This is illustrated by Figure 6.25,
where the damage distribution is shown for all turbulence intensity bins of a few
wind speed bins. Usually an increased damage and increased damage range can
be observed for increasing turbulence intensity in one wind speed bin for low wind
speeds (up to 9m/s). This is shown in Figure 6.25a. For higher wind speeds,
starting from wind speeds around maximum thrust loading (11m/s) however, the
turbulence intensity seems to be less critical. Both in terms of absolute damage
values and damage ranges, the higher the turbulence doesn’t necessarily means the
higher the damage (range). This can be seen in Figures 6.25b and 6.25c. Although,
for the lowest turbulence intensity, the lowest damages are found in every wind
speed bin.
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(b) Wind speed around 11m/s
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(c) Wind speed around 18m/s

Figure 6.25: Damage distributions in all turbulence intensity bins of the damage
table, for a specific range of wind speeds. The distributions are indicated using
box plots.
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The differences in damage tables can be translated to lifetime distributions as
well. Figure 6.26 shows the resulting median expected lifetime for all outer welds
for four combinations of environmental parameters. The extrapolation in time is
based on environmental distributions as measured over almost 7 years. The first
one is simply wind speed only, shown in blue. The second (wind speed and wind
direction) and third (wind speed and turbulence intensity) take into account the
possible wake flows in the farm, shown in green and orange respectively. The last
(wind speed and wave height) considers the wave activity as well, shown in purple.

(a) Median value of the resulting lifetime distribution for all outer welds of the substruc-
ture (TP in circles and MP in squares)
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(b) Zoom on distributions of critical weld

Figure 6.26: Expected lifetime for outer welds of the substructure, calculated
using different damage tables. The damage tables were composed using several
combinations of environmental parameters: wind speed only in blue, wind speed
and wind direction in green, wind speed and turbulence intensity in orange and
wind speed and wave height in purple.

To explain these results, it is important to know for which bins the highest
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average damage was measured. Heat maps were created to visualize the damage
table of each extrapolation option. In these heat maps, high damage is represented
by dark red, while low damage is represented by dark blue. These are depicted
in Figure 6.27. Bins that needed to be filled are shown with a larger border. It
can be seen highest damage is measured for high wind speed. If the damage is
binned based on two parameters, usually one of the bins show less damage than
the others. For high wind speeds, usually some bins needed filling up, often with
a high damage value.

(a) Wind Speed

(b) Wind Speed and Turbulence Intensity

(c) Wind Speed and Wind Direction

(d) Wind Speed and Wave Height

Figure 6.27: Damage tables for several lifetime extrapolations based on different
combinations of environmental parameters

Moreover the difference in occurrence of these specific bins during the damage
measurement period, the measurement period, and the period on which the ex-
trapolation was based upon, the extrapolation period, is important as well. To
quantify the occurrence of each specific environmental bin relative to the total
period, the relative occurrence of all bins is calculated for both periods. The rel-
ative occurrence is defined as the number of data points in the specific bin Nbin,
divided by the total number of data points Ntotal (P = Nbin

Ntotal
). To visualize this

difference, heat maps were created, where the colors indicate the difference in rel-
ative occurrence between the extrapolation period and the measurement period
(Pextrapolation − Pmeasurement). Red indicates a higher relative occurrence during
the extrapolation period and blue a higher relative occurrence during the mea-
surement period. These heat maps are shown in Figure 6.28. In general, it can be
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seen the measurement period had more gentle average environmental conditions
than the extrapolation period. That is to say, bins represented by blue to green
colors in Figure 6.28 occur all for low wind speeds, low turbulence intensity or
low wave height. This difference is even more visible for 2d tables (Figures 6.28b,
6.28d and 6.28c). This observation was already made in previous section as well.
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Figure 6.28: Differences between relative occurrence of the specific environmen-
tal conditions during the measurement period with respect to the extrapolation
period, based on several combinations of environmental parameters

All these figures show that conditions for which the average damage is high
(red to green in Figure 6.27) occurred more often during the extrapolation period
than during the measurement period (yellow in Figure 6.28). Again, this indicates
the measurement period was rather gentle in comparison to the expectation for
the entire lifetime. This was also already shown in previous section.

Results in Figure 6.26 show the extrapolation based on wind speed only gives
the highest lifetimes for all welds. This was also observed in previous section when
1d and 2d extrapolation was compared. This results in Figure 6.26 indicate this
is not only true for turbulence intensity but also for the other parameters. The
explanation for this difference remains the same. That is to say, the environ-
mental conditions during the measurement period were quite gentle with respect
to the extrapolation period. This difference in environmental conditions is more
pronounced when binning is done based on two parameters. For all wind speeds
also less damaging conditions, e.g. low turbulence or wave heights, are distinguish
from more damaging conditions, e.g. high turbulence or wave heights. In case
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of extrapolation based on wind speed only, the damage used for a specific wind
speed is averaged over the different damaging conditions as they occurred during
the measurement period. This can be observed in Figure 6.27. Here, the highest
damage observed for the wind speed bins is clearly lower than the highest damage
observed in the damage table for any other extrapolation. Since the measurement
period was quite gentle, more damaging bins are given more importance during
extrapolation. This is true for the extrapolation based on wind speed only, but
even more so for the other extrapolations. One can see that for the other ex-
trapolations, the highest differences in relative occurrence between measurement
and extrapolation periods are found for bins around wind speed bin number 10
(bins 2 to 4 in Figures 6.28b and 6.28d and bins 1, 2 and 11 in Figure 6.28c).
These bins coincide with an increased damage compared to the averaged damage
for that wind speed (Figures 6.27b, 6.27d and 6.27c respectively). Therefore more
influence of the higher damaging bins is found during all 2d-extrapolations. This
leads to a higher extrapolated damage and lower estimates for expected lifetime.

Looking at the two options taking wake effects into account, the extrapolation
using the turbulence intensity results consistently into the lowest lifetime estimate.
This is explained by the erroneous filling of empty bins. Looking at the lay-out of
the farm, the turbine is standing in the wake of other turbines for wind directions
in bins number 1 to 3 in Figure 6.27c (among others). However, these bins (for
higher wind speeds) are filled with too low average damage values in the damage
table based on wind direction (Figure 6.27c). This leads to a lower extrapolated
damage and thus higher lifetimes. By using turbulence intensity instead, wind
directions for which the turbine stand in the wake of others but did not occur
during the measurement period will be extrapolated correctly. Moreover, less bins
needed filling (Figure 6.27b).

Finally, a difference in extrapolation based on turbulence intensity and ex-
trapolation based on wave height can be observed. This can mainly be explained
looking at the most dominant wind speed bins, being numbers 8 to 13 approx-
imately. For these bins, more bins based on turbulence intensity seem to have
higher average damages than the bins based on wave height. This can explain the
higher extrapolated damage and thus lower expected lifetimes when considering
turbulence intensity instead of wave height.

Operating conditions

The load acting on an OWT differs from one operating condition to another.
For example, during standstill conditions loads are for the current offshore wind
turbines on relatively small monopiles usually much lower than during normal
operating conditions of the wind turbine. Moreover, the correlation between the
acting loads and the different environmental conditions can be different for another
operational state. In this respect, it might be useful to compose multiple load case
tables for multiple operational states. Figure 6.29 shows the resulting damage
table for all operational data and for all non-operational data. Again, the damage
is calculated at the sensor location. The damages are distributed based on the
SCADA values for wind speed and turbulence intensity. For both operational
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conditions, the same bin borders are chosen.
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Figure 6.29: Damage tables for operational and non-operational data, based on
wind speed and turbulence intensity bins

Both figures show circles when the resulting damage was calculated based on
measured data in the same bin. If crosses are shown, the damage bin was empty
initially and needed filling up. Here, it can be seen a lot of bins needed to be
filled for non-operational conditions. Since filling up that many bins can cause a
serious bias in the results, it is advised to reduce the dimensionality of the table,
to increase the bin size or to collect more data. In this case, the dimensionality is
reduced. Another possibility is to use damage values based on the load case tables
as calculated during design, if these are available.

For this analysis, the lifetime was calculated using three different datasets.
Firstly, a dataset was used were the turbine was constantly operating. In reality,
this is not feasible. A second dataset contained 20% of non-operational data.
This non-operational data consisted of a combination of standstill conditions and
a few rotor stops. A third dataset also contained 20% of non-operational data.
Again the non-operational data consisted of a combination of standstill conditions
and rotor stops. For this dataset however a lot more rotor stops were recorded.
Moreover standstill conditions occurred less. In case of the two last datasets, two
damage tables were composed. One based on operational data only, using wind
speed and turbulence intensity to bin. A second based on non-operational data
only, using only wind speed to bin. The two resulting damage tables based on
non-operational data are shown in Figure 6.30.

It can be seen the mean damage recorded for the dataset with more rotor stops
(shown in orange) is often higher than for the dataset dominated by standstill
(shown in green). However, still a lot of empty bins were detected and needed
filling. For the dataset dominated by standstill, the damage clearly increases for
increasing wind speed starting at 18m/s. This might be because these bins can
include cut-out events were the rotor stops rotating due to too high wind speeds.
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Figure 6.30: Damage tables based on two sets of non-operational data. Set 1 was
dominated by standstill conditions, while set 2 contained more rotor stops.

The resulting expected lifetimes are shown in Figure 6.31.
The results show a consistent lower estimate for lifetime for the dataset con-

taining more rotor stops. This is explained by the more damaging character of a
rotor stop with respect to operating conditions or standstill. Moreover, in terms
of damage accumulation non-operation can be advantageous. It can be seen that
the results for the dataset including non-operational data dominated by standstill
show a higher expected lifetime than the dataset with only operational data. This
confirms the statement that standstill conditions are less damaging than operating
conditions, for this type of turbine and foundation. To achieve a reliable expected
lifetime, it is thus important a distinction between operating conditions, standstill
and rotor stops is made. It is not difficult to distinguish operational data from
non-operational data based on standard SCADA parameters. However, when only
10 minute statistics of SCADA data are available, the distinction between stand-
still and rotor stops is not as easily made.
When performing a lifetime assessment, creating different damage tables based
on different operational conditions might be very useful. If necessary, also the
environmental probability distributions used for each operational state can differ.
Eventually, a weighted combination of the resulting extrapolated damages can be
used to calculate the lifetime.
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(a) Median value of the resulting lifetime distribution (in logarithmic scale) for all outer
welds of the substructure (TP in circles and MP in squares)
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Figure 6.31: Expected lifetime for outer welds of the substructure, based on three
different scenarios. The first assumes only operating conditions over the entire
lifetime, shown by the blue markers. The second includes non-operational con-
ditions, dominated by standstill, shown by the green markers. The third also
includes non-operational conditions but including more rotor stops, shown by the
orange markers.
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Design vs measurements

In design documents, one can find the distribution used to represent the environ-
mental conditions over the entire lifetime of the wind turbine. This distribution
is believed conservative, as it also includes some storm conditions that only rarely
occur. Moreover, it is not sure if the conditions meteorologists expect are the same
as those really occurring.

(a) Median value of the resulting lifetime distribution (in logarithmic scale) for all outer
welds of the substructure (TP in circles and MP in squares)
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Figure 6.32: Expected lifetime for outer welds of the substructure, based on op-
erational data only. Extrapolation is performed based on wind speed and wind
direction distributions, both from design (green markers) and data-based (blue
markers).

The alternative is to calculate a distribution based on measurements performed
during a longer period of time. This distribution is closer to the truth for the past
period. However, it is not sure if this distribution is representative for the coming
years.



166 Chapter 6. Lifetime assessment of an instrumented turbine

Figure 6.32 shows the difference in expected lifetime when an as designed distribu-
tion or a data-based distribution is used. In both cases the distribution was made
based on wind speed and wind direction and only data under operating conditions
was used. Results based on as designed probabilities show a lower expected lifetime
for all welds, compared to results based on data driven probabilities. These re-
sults thus confirm design takes into account a higher probability of high damaging
environmental conditions.

Lifetime assessments for decision support

In the case study, a lot of confidence is given to the values as reported or suggested
by design documents and available standards. However during the lifetime of a
wind turbine, the values for some safety factors or the choice for S-N curve could
change. A possible reason for this is corrosion. It that case, a different S-N curve
is applied to account for a faster fatiguing of the material. Moreover, corrosion
pits can cause additional local stresses leading to a necessary increase in SCF. Or
as material corrodes, the radius of the structure might change.
Another possibility is the adjustment of standard procedures as a result of new
research. For example recently additional research was done to update the S-N
curves as used for offshore wind industry. Or, as indicated in Section 6.2.3, an
adjustment of the standard formulas to calculate SE or SCF.
The developed framework facilitates the change in such parameters. Therefore
dedicated analyses to see the effect of such changes on the lifetime could be done
easily.

Impact of additional inspections on lifetime assessments

For some of the safety factors as explained in Section 6.2.3 the value is chosen
based on the required inspection plan over the lifetime of the wind turbine. But
even if these values are chosen high enough and no inspections are strictly required,
the resulting information coming from such an inspection can improve the results
of a lifetime assessment. By conducting inspections, information is available of the
actual cracks in the structure. With this additional information, a more accurate
lifetime assessment can be performed using a fracture mechanics model, e.g. based
on Paris’ Law. This model requires measurements of the initial crack size and the
fatigue load acting on the structure [103, 104].
On the other hand, the information obtained from a structural health monitoring
system can influence the required inspections as well. In general, an inspection
plan is made in such a way an inspection is scheduled when the expected ac-
cumulated damage, including the uncertainty often given by CoV, has increased
significantly with respect to the previous inspection. However, by using the in-
formation obtained from a SHM system, this uncertainty CoV can be decreased
significantly. A reduction of 70% is shown for marine structures in [105]. There-
fore each required inspection can be postponed and the total amount of required
inspections over the lifetime of a turbine can be reduced. As a result, the total
expected maintenance costs can be reduced if a monitoring system is present, as
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indicated in [106].

6.5 Conclusion

In this chapter the state-of-the-art approach for damage calculation was explained.
This approach consists in performing a cycle counting algorithm on the stress sig-
nal, in this case rainflow counting. Afterwards damages are calculated using the
Miner’s rule and the appropriate S-N curves. In industry a lot of additional safety
factors are applied to consider for the difference in dimension between the actual
components and the test specimen which are used to generate the S-N curves.
More information about the purpose and the calculation is given for several safety
factors, such as stress concentration factor, size effect and material safety factor.
The damage calculation was performed for multiple welds in the structure. Here,
the specific values for the safety factors as proposed by the newest standard [93]
were applied. Moreover a static extrapolation of the stress signal was performed
to account for the difference in bending moment along the structure.
The general method to calculate the expected lifetime from measured damages
was explained. This method is based on some decisions made for environmental
and operational conditions over the entire lifetime of the turbine. Moreover, the
uncertainty of the resulting lifetime was obtained using sample based bootstrap-
ping.
The damage and lifetime calculations are demonstrated using data from an op-
erating OWT and a geometry of a fictional OWT. The influence of the possible
decisions regarding environmental and operational conditions is illustrated. To
start with the effect of including one or two environmental parameters in the ex-
trapolation over time is shown. In general, two environmental parameters would
be preferred IF enough damage data is available. If insufficient damage data is
available, bins need to be filled up. This filling can lead to a bias and thus unreal-
istic results. Moreover, if only few data points are present in one bin, the influence
of outliers is high.
The choice for environmental parameters in the extrapolation can depend on ap-
plication. For wake-dominated wind farms, the choice for wind direction or turbu-
lence intensity seems more logical. Of those two, turbulence intensity is preferred
over wind direction to reduce the probability for empty bins. If the damage of the
turbines would be wave-driven, the choice for a wave-related parameter is more
advisable.
Furthermore, it is shown the expected lifetime of a turbine is heavily influenced
by the occurrence of parked conditions and rotor stops during its lifetime. It is
advisable to calculate multiple damage tables for different operating conditions,
i.e. operational, standstill and rotor stops. Moreover a realistic probability of
occurrence for all operating conditions is important for the lifetime extrapolation.
Moreover, if the environmental probability distribution from design is used to per-
form a lifetime assessment, a more conservative result is obtained with respect to
probability distribution based on a long period of data.
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Chapter 7

Fleet leader concept

At this point, the available SCADA data does not contain enough information and
the right measurements to perform turbine-specific lifetime assessments. There-
fore the installation of additional sensors on the OWT’s substructure is necessary.
The current practice in industry is to follow up only a few OWTs in the farm
by installing additional sensors, e.g. strain gauges, on those. This chapter elabo-
rates on the possibility to extrapolate the measured damages at those instrumented
turbines, the fleet leaders, to the other wind turbines in the farm. This extrap-
olation is mainly based on environmental conditions. After giving an overview
of the available data in Section 7.2, first the damage of all available fleet leaders
is visualized with respect to the environmental conditions in Section 7.3. In Sec-
tion 7.4 the concept of extrapolating damage based on environmental conditions
is demonstrated on multiple wind farms. However, differences in structural prop-
erties proved to influence the measured damage at OWTs greatly. To gain better
understanding of these influences, the contribution of different frequency ranges of
the stress signal to the accumulated damage is investigated in Section 7.5. Finally
Section 7.6 concludes this chapter.
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7.1 Introduction

As (offshore) wind farms are growing older, the question about possible lifetime
extension is getting more important. Currently, most lifetime assessments require
additional instrumentation of the OWT’s substructure, such as strain gauges [15].
However, installing additional sensors, especially strain gauges, is still considered
quite expensive for the operators. The current practice in industry is to instrument
about 10% of the OWTs in a wind farm with additional sensors. This requires the
extrapolation of the measurements from those turbines to predict the fatigue life
of the other wind turbines. This concept was introduced for blade loading by [107]
as the ”Fleet Leader Concept” and will be applied on turbine foundations of mul-
tiple wind farms in this chapter. First the differences in damage between several
turbines are visualized and commented upon (Section 7.3). Afterwards the fleet
leader concept is applied based on environmental conditions only (Section 7.4).
Finally the differences in damage accumulation are discussed (Section 7.5).

7.2 Data

For the analyses performed in this chapter, data of different wind turbines located
in different wind farms is used. For each of these wind turbines, strain data
and 10 minute statistics of SCADA data was available. Moreover, one set of
meteorological data was available. More information about all data can be found
below.
For all turbines, a period of 9 months is used to visualize the accumulated damages,
while a period of one year is used validate the fleet leader concept. Only data for
which the turbine was operational was used.

7.2.1 Strain data

Each of the wind turbines included in this analysis, was instrumented with strain
sensors at the interface between tower and transition piece. In all cases, the mea-
sured strain signals are translated into a stress signal for fore-aft movement and
a stress signal for side-side movement, using the orientation of the wind turbine
as given by the SCADA yaw angle. This was explained in Section 2.2.2. The
measurement setup was similar for most of the instrumented wind turbines and
consisted of four or six classical strain gauges.
The instrumented turbines cover different foundation types and turbine dimen-
sions. Moreover, often the design of the substructure is site specific. Therefore the
height of interface between tower and transition piece or water depth can differ as
well. This often leads to differences in structural behavior, represented by differ-
ences in resonance frequencies, damping values and mode shapes. The difference
in design of the substructure might also lead to differences in values for the com-
bined safety factor for the fatigue analysis.
The instrumented turbines are distributed over several offshore wind farms. Usu-
ally at least two different turbines in one farm are instrumented. In general, a lot
of specifications are identical or very similar among the turbines within one farm.
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For example the turbine type and size, the foundation type, the height of TP-TW
interface and values for safety factors.

7.2.2 SCADA data

For all turbines a subset of SCADA data was available. The subset contained 10
minute averages and standard deviations of wind speed. The turbulence intenstiy
is calculated as well. The available SCADA data was filtered first. The same filters
from Section 6.4.2 are applied.

7.2.3 Meteorological data

Additionally, 10 minute averages of wave height measurements, taken in one of
the wind farms, were available. Given the slow variations in wave conditions and
the fact all farms are located fairly close to each other, the wave measurements
are assumed to be applicable for all wind turbines.

7.3 Damage visualization

Different turbines, with different structural properties, react differently to changes
in environmental parameters. In order to visualize these differences, the damage
for every 10 minutes is calculated. The same procedures as explained in Chapter 6
are applied. In this case, the same S-N curve (DNV-D-A) and the same value
for stress concentration factor, size effect and material safety factor (all 1) is used
to calculate the damage. No extrapolation within the structure is performed.
Therefore, the damages shown are at the TW-TP interface.
The resulting damages are divided in bins based on the environmental conditions.

Figure 7.1: Median value of damage vs wind speed for multiple wind turbines
across 4 different farms.
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Figure 7.1 shows the resulting median damage for each wind speed bin for eight
different wind turbines. The curves of the turbines of WindFarm2 (represented by
the red and green line) are clearly different from those of the other wind farms.
First of all, the median damage in each bin above cut-in wind speed is clearly
higher compared to the other turbines. This can be explained by the increased
size of the turbine blades and the resulting higher thrust load with respect to the
other turbines. However, below cut-in wind speed the damage of the turbines of
WindFarm2 is clearly lower. The explanation for this would lie in the foundation
type. The turbines of WindFarm2 are installed on jacket substructures, which are
less susceptible for waves. Although the wave load for low wind speeds is usually
very low, it is still present. Since monopiles are more affected by them, higher
damages can be observed.
Since one of the turbines of WindFarm2, WF2-T1, has an additional 1P variation,
the median damage is increased with respect to the other wind turbine of Wind-
Farm2, WF2-T2. This increase however is only visible for wind speeds higher than
ca. 9m/s.
The turbines installed on monopiles show a similar behavior. Also here an increase
in damage around cut-in wind speed can be observed, although much smaller.
Two turbines show a lower damage: WF1-T1 (the dark blue line) and WF5-T1
(the orange line). These are two turbines installed in shallower waters. Moreover,
the turbine size of WF1-T1 is slightly smaller.
Furthermore, a difference in damage can be observed between WF4-T1 and WF4-
T2. Here WF4-T2 seems to accumulate less damage for wind speeds higher than
ca. 11m/s. Although these turbines are installed in the same farm and thus have
some specifications, such as turbine type, in common, the differences in structural
properties are relatively high between both.
Finally the damage of three turbines seem to match very nicely: WF5-T2, WF5-T3
and WF4-T1. This is despite the known differences in structural properties.

Given the clear difference in damage behavior and accumulation with respect
to wind speed, the two turbines of WindFarm2 will be considered separately from
the others in the remainder of this section.

Figures 7.2 and 7.3 show the dependency of damage on turbulence intensity for
turbines installed on monopiles and jackets respectively. Each sub-figure shows the
median damage of the bins, versus the turbulence intensity (indicated as bin num-
ber). The bin borders of the turbulence intensity bins depend on the wind speed
and are calculated for each turbine individually as explained in Section 6.3.1 using
the first, second and third quartile. All axis limits of the sub-figures are taken
exactly the same for each figure individually.

In general the damage increases for increasing turbulence intensity. Only for
the higher wind speed of 18m/s approximately, the damage seems almost constant
for WF5-T2, WF5-T3 and WF4-T1. In general the same observations as in Fig-
ure 7.1 can be made. Moreover most curves seem comparable to each other in the
same wind speed bin. However, small differences can be observed. In Figure 7.2
the damage of WF1-T1, WF5-T1 and WF4-T2 seem to differ more for different
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turbulence intensity bins and thus to be more influenced by the turbulence inten-
sity than the damage of the other turbines. In Figure 7.3a the shape of the curves
of both figures differs significantly. However, for the other wind speed bins, the
curves are very comparable.
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Figure 7.2: Average value of damage vs turbulence intensity for multiple wind
turbines, all installed on monopiles. Data shown corresponds to one wind speed
bin each figure
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Figure 7.3: Average value of damage vs turbulence intensity for multiple wind
turbines, all installed on jackets. Data shown corresponds to one wind speed bin
each figure
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Finally also the dependency of the damage on wave height is shown for the
different turbines. Figures 7.4 and 7.5 show the median damage of the specific
bins for turbines installed on monopiles and jackets respectively. Each sub-figure
focuses on only one wind speed bin. The bin borders again depend on the wind
speed. However, since the (significant) wave height measurement is the same for all
turbines, the bin borders are defined based on the wind speed bins of one turbine
(WF1-T1). Therefore the same bin limits for wave height are used for all turbines
within one wind speed bin. These are also indicated in the figures. Moreover,
all axis limits of the sub-figures are again taken exactly the same for each figure
individually.
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Figure 7.4: Average value of damage vs wave height for multiple wind turbines,
all installed on monopiles. Data shown corresponds to one wind speed bin each
figure

A first observation can be made for all turbines. Usually the damage increases
with increasing wave heights. In Figure 7.4, the damage of WF1-T1 and WF5-
T1 seem to be influenced less by the wave height than the damage of the other
turbines. These two turbines are the shallowest, which can explain this difference.
For higher wind speeds (above 10m/s), WF5-T1 seems to be influenced a bit more
than WF1-T1. This is probably because of the slightly higher turbine size (and
thus bigger monopile) of WF5-T1.
For all other turbines the curves seem very comparable to each other. This is also
true for the turbines installed on jackets (Figure 7.5).
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Figure 7.5: Median value of damage vs wave height for multiple wind turbines, all
installed on jackets. Data shown corresponds to one wind speed bin each figure

7.4 Simple fleet leader

In Section 7.3 one could see the damage is influenced by, among others, the mea-
sured wind speed, wave height and turbulence intensity. Given the similarities seen
between the damage of turbines, the question rises whether one could extrapolate
measured damage at one turbine (the fleet leader) to another turbine solely based
on environmental conditions. In this section, it is checked if the damage of one
turbine can be estimated using another turbine. Thus one turbine is chosen as
a fleet leader and the extrapolated damages of the other turbines are compared
to the measured damage. The extrapolation is done twice for each turbine, once
based on wind speed only and a second time based on wind speed in combination
with turbulence intensity.
To simplify the analysis, only data points for which the turbine is operating are
considered. Moreover, the damage is calculated as if the turbine would have been
operating a full year in operating conditions in the same environmental conditions
as during the remaining data points.
Basically, the method used is similar to the one used in Chapter 6 to calculate the
expected lifetime of an instrumented wind turbine. Only in this case the environ-
mental distribution used to extrapolate is the one as measured at the desired wind
turbine and no lifetime is calculated using the extrapolated damage. Moreover
the damage is only calculated for the sensor location, including using the specific
safety factors as given by the individual design documents.
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7.4.1 Within one farm

WindFarm3

First, the extrapolation is performed in an older wind farm, WindFarm3. Here all
monopiles installed in the wind farm have the same design. Therefore, structural
properties of all turbines are very comparable. Figure 7.6 shows the results where
the damages measured at the fleet leader, WF3-T1, were extrapolated on two other
wind turbines in the farm, WF3-T2 and WF3-T3. The resulting extrapolated
damages are normalized with respect to the actual measured damage at WF3-
T2 and WF3-T3 respectively. In blue the extrapolated damage based on the wind
speed distribution measured at WF3-T2 or WF3-T3 is shown. The red vertical line
shows the amount of damage actually measured at WF3-T2 or WF3-T3, whereas
the purple vertical line indicates the amount of damage measured at the fleet leader
WF3-T1.

(a) Extrapolated and measured damage at WF3-T2

(b) Extrapolated and measured damage at WF3-T3

Figure 7.6: Damage extrapolation of measured damage at WF3-T1 to two other
wind turbines, based on wind speed only (blue) and a combination of wind speed
and turbulence intensity (orange). Results are normalized with respect to the
actual damage measured at the extrapolation turbine, which is shown in red. The
actual damage measured at the fleet leader is shown in purple.

In general, differences up to only 10% of the measured damage are found be-
tween the extrapolated damage and the actual damage. This is an improvement
over taking the measured damage at the fleet leader as is for every turbine in the
farm. This illustrates the possible gain in damage extrapolation using the fleet
leader concept for turbines with comparable structural dynamics.
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Taking a closer look at the results, one can observe an almost perfect match
between the center of the blue distribution for WF3-T3 and the actual damage
(Figure 7.6b).
However, such a perfect result was only obtained for an extrapolation based on
wind speed exclusively. In orange the result for the extrapolation based on the
combination of wind speed and turbulence intensity is given. An overestimation
of only ca 2% can be observed based on the median of the extrapolated damage
distribution with respect to the actual measured damage. This is caused by small
differences in the measured damage tables.
The difference in damage table for all turbines of WindFarm3 is illustrated by
Figure 7.7. Here, the damage tables of all turbines were composed based on 2d
binning using wind speed and turbulence intensity. The values of the bin borders
for turbulence intensity bins are different for every wind speed bin. These values
were established based on the environmental data of the fleet leader and used for
the other turbines as well. The resulting damage values are shown versus the
turbulence intensity, for a few wind speed bins. It can be seen the damage ac-
cumulated by WF3-T1 is often higher than the damage accumulated by WF3-T3
although the environmental conditions were exactly the same, especially for low
turbulence. This causes a (slight) overestimate of damage when WF3-T1 is taken
as the fleet leader to estimate the damage at WF3-T3.
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Figure 7.7: Average value of damage vs turbulence intensity for all turbines of
WindFarm3. The data shown in one sub-figure corresponds to one wind speed
bin.

When looking at the results of the extrapolation of WF3-T1 on WF3-T2, dif-
ferences between measured and extrapolated damage are clearly higher. Here, the
difference between predicted damage and the actual damage goes up to ca. 13%.
However, this is still reasonable.
For this extrapolation, a higher difference between the two types of extrapolation
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can be observed. This can be explained by a difference observed in environmental
conditions at the turbines. When looking at the probability of turbulence inten-
sity (Figure 7.8), WF3-T2 sees a little bit less turbulence than the other wind
turbines. This is caused by its location in the farm, being at the edge. Due to this
lower turbulence, during the extrapolation more weight will be given to the lower
turbulence bins and thus often lower damage.

Figure 7.8: The occurrence of turbulence intensity at WF3-T2 in blue, WF3-T3
in red and WF3-T1 in yellow.

WindFarm2

The same concept is applied on a second wind farm, where the turbines are in-
stalled on jackets. Looking at the results given in Figure 7.9, none of both ex-
trapolations is successful. The estimated damage is only 20 to 38% of the actual
measured damage. This is explained by the existence of a rotor imbalance at
WF2-T1. Therefore the turbine accumulates more damage due to an additional
cyclic loading and the extrapolated damage based on the damage measurements
at WF2-T2 is underestimating the actual damage.
Moreover, a big difference between both extrapolations (about 15% of the actual
damage) can be observed. This can be explained by the difference in position
in the farm. The fleet leader, WF2-T2, is surrounded by other turbines in all
wind directions and thus experiencing a lot turbulence. The extrapolated turbine
however has free wind flow for the majority of the wind directions. Therefore
the measured turbulence intensity at this turbine will often be a lot lower. When
extrapolating based on wind speed only, this distinction in turbulence intensity
is not made. Although, when extrapolating based on wind speed and turbulence
intensity, the extrapolated damage will be dominated by the lower turbulence in-
tensity bins with lower average damages. Therefore the extrapolated damage will
be a lot lower compared to the extrapolated damage based on wind speed only.
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Figure 7.9: Extrapolated damage distribution of WF2-T1 based on measured dam-
age at WF2-T2, compared to actual damage. Extrapolation is done based on wind
speed only (blue) and a combination of wind speed and turbulence intensity (or-
ange)

WindFarm4

The next wind farm at which the concept was applied has two instrumented tur-
bines. Here the structural properties of the two turbines are not comparable to
each other. Looking at the results given in Figure 7.10, none of both extrapo-
lations is successful. The damage was overestimated by 60 to 70% of the actual
measured damage. This difference is not only explicable by small differences in
environmental conditions. Nor suffered one of the turbines from an additional 1P
oscillation. The main reason for this difference in damage can be explained by a
difference in structural properties.

Figure 7.10: Extrapolated damage distribution of WF4-T2 based on measured
damage at WF4-T1, compared to actual damage. Extrapolation is done based on
wind speed only (blue) and a combination of wind speed and turbulence intensity
(orange)

WindFarm5

The last wind farm where the concept was tested upon was WindFarm5. Here
WF5-T2 was chosen as a fleet leader. The extrapolated damage of WF5-T2 on
WF5-T1 and WF5-T3 are shown in Figure 7.11. Results show a big difference
among the two turbines. The extrapolated damage based on WF5-T2 on WF5-T1
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is a little less than 6 times bigger than the measured damage at WF5-T1. This
is caused by the big difference in accumulated damage between both turbines, as
was already established in previous section based on Figure 7.1. This difference in
accumulated damage is because the structural properties are very different for both
turbines. The results for WF5-T3 on the other hand are much closer to the actual
damage. Here, the difference is only 40 to 55% of the actual measured damage at
WF5-T3. This might indicate the structural properties of WF5-T2 and WF5-T3
are more comparable. This could already be expected, since comparable damages
were measured for both turbines (Figure 7.1). However, compared to WindFarm3,
the difference is still quite big and is probably caused by (little) differences in
structural dynamics.

(a) Extrapolated and measured damage at WF5-T1

(b) Extrapolated and measured damage at WF5-T3

Figure 7.11: Damage extrapolation of measured damage at WF5-T2 to two other
wind turbines, based on wind speed only (blue) and a combination of wind speed
and turbulence intensity (orange)

7.4.2 Across different wind farms

Taking it one step further, one could try to extrapolate the damage at one turbine
in one farm to another turbine in another farm. In reality, this might be useful for
wind farms where no turbine is instrumented, but where instrumented turbines
are present in a neighboring farm. Figure 7.12 shows the results for WF5-T1 as a
fleet leader.
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(a) Extrapolated and measured damage at WF1-T1

(b) Extrapolated and measured damage at WF4-T1

(c) Extrapolated and measured damage at WF4-T2

(d) Extrapolated and measured damage at WF5-T2

(e) Extrapolated and measured damage at WF5-T3

Figure 7.12: Extrapolated damage distribution of turbines comparable in size
installed on monopiles based on measured damage at WF5-T1, compared to actual
damage. Extrapolation is done based on wind speed only (blue) and a combination
of wind speed and turbulence intensity (orange)



182 Chapter 7. Fleet leader concept

It can be seen, the damage at most turbines is underestimated except for WF1-
T1. It was already seen in Section 7.3 that the damages of WF1-T1 and WF5-T1
were comparable, despite their location in different farms and different turbine
types. This is now confirmed with a difference of only 20% in case of extrap-
olation based on wind speed only. As could be seen in Figures 7.1 and 7.2, the
damages of both turbines were not for all wind speed and turbulence intensity bins
comparable. This probably explains the difference in both extrapolation methods.
If more bins with comparable damage get higher weights by the 1d extrapolation
compared to the 2d extrapolation, a better result is obtained.
For all other turbines, the extrapolated damage is maximum a little over 40% of
the actual measured damage. This could be expected given the high difference in
damage between WF5-T1 and the other turbines, as shown in Section 7.3. Again,
the differences can be explained by different structural dynamics.
Additionally, the same exercise is repeated for different fleet leaders. Results for
the extrapolation based on wind speed only are given in Table 7.1. The values
given in the table indicate the median of the extrapolated damage distribution,
normalized with respect to the actual measured damage in %. Only for two combi-
nations acceptable results are obtained, surprisingly enough none within the same
wind farm. The first couple of turbines is WF1-T1 and WF5-T1. For these tur-
bines, comparable damages were shown in Section 7.3 indeed. The second couple
of turbines is WF4-T1 and WF5-T2.

Table 7.1: The median of extrapolated damage distribution, normalized with re-
spect to the measured damage at the extrapolated turbine, for different fleet leaders
and different extrapolated turbines

med(Dextr)
Dmeas

(%) Extrapolated Turbine

WF1-T1 WF4-T1 WF4-T2 WF5-T1 WF5-T2 WF5-T3

F
le

et
L

ea
d

er

WF1-T1 100,00 16,67 26,85 88,45 15,73 21,83
WF4-T1 598,28 99,99 160,92 519,22 92,23 130,55
WF4-T2 375,90 64,32 100,00 313,06 57,49 80,34
WF5-T1 117,16 19,76 30,86 99,98 17,99 25,49
WF5-T2 642,96 109,09 177,12 563,31 100,00 140,44
WF5-T3 455,98 76,58 124,57 401,09 70,73 99,99

In general, the fleet leader concept with extrapolation based on environmen-
tal conditions only does not perform accurately. Clearly not only different envi-
ronmental conditions cause difference in damage. Also differences in structural
properties are important. For example differences in resonance frequencies can
cause differences in accumulated damage. The closer the wave frequency gets to a
resonance frequency of the structure, the more damage will be accumulated [108].
The same is true if the frequency of variations in wind or the frequency of rotor
dynamics get close to a resonance frequency. Moreover the damping values of each
structure can be important as well, just like the mode shapes.
Additionally, differences in as designed values for safety and correction factors or
S-N curves should be taken into account.
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This simple application of the fleet leader concept does however work for similar
turbines, of the same type, same foundation and similar dynamic and structural
behavior. Unfortunately, designs of foundations in newer wind farms are more
and more specific to site and location and thus rarely comparable to all other
foundations in the farm. Identifying and quantifying these differences between the
different structures and their effect on damage accumulation is key to ensure a
correct damage extrapolation. This will get even more important for the bigger
wind turbines installed on bigger monopiles. Due to the increase in height and
width of the monopile and the resulting decrease in resonance frequencies, wave
loading will get more and more important for a fatigue assessment.

7.5 Contribution of specific loads to damage

In Section 7.4 it is shown that the damage of one turbine can only be extrapolated
to another turbine based on differences in environmental conditions exclusively, if
the structural properties of the turbines are almost identical. For turbines where
the structural properties are different, a (significant) mismatch is observed. In this
section, the contribution to the total damage of different loads acting on the struc-
ture is examined. Since several loads act within different frequency ranges, the
analysis is based on filtering the original stress signal for different frequency bands.
For all bands the lowest admissible frequency is set to 0, the highest admissible
frequency is varied from 0, 02Hz to 5Hz in a step of 0, 02Hz. Every filtered stress
signal is cycle counted and translated into a damage value. The same S-N curve
is used for all stress signals and no correction factors were applied. The resulting
array of damages represent the accumulated damage for an increasing frequency
band.
The analysis is done for multiple turbines and for three different days. The days
are chosen is such a way each of them shows a different operation state. During
one of them only operating conditions occur. For another day very high wind
speeds were measured and all turbines stopped producing power at a certain point
due to cut-out. During the last day, the wind speed increased from very low to
normal. Therefore that day represents cut-in conditions
In all figures in this section, a frequency band i is represented by the maximum
value of the band, indicated as cut off frequency fi (Hz). Moreover, instead of
showing the accumulated damage, the damage contribution for each cut off fre-
quency is shown. This is calculated by subtracting the damage for the previous
(slightly smaller) frequency band [0, fi−1] from the damage obtained for the new
frequency band [0, fi]. This is summarized by Equation 7.1.

Dcontr,fi = Dtotal,[0,fi] −Dtotal,[0,fi−1] (7.1)
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Figure 7.13 shows the damage contributions (on a logarithmic scale) for all
turbines for a normal day. It can be seen the damage of all turbines is dominated
by frequencies up to 0,5 Hz, or in case of WindFarm2up to 0,7 Hz. The loads
acting in this frequency range are the quasi-static thrust load, the cyclic loading
as induced by wave loads, the first mode of the structure and possibly some rotor
dynamics (1P and 3P).
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Figure 7.13: The contribution to the total damage by each specific frequency band
during a normal operational day for multiple turbines

It can be seen the turbines of WindFarm2 not only have higher damage con-
tributions, but also the general shape of the curves differ. The higher damage can
be explained by the bigger turbine, the difference in shape is mainly caused by the
different foundation.
Clear differences can be distinguished among the turbines of WindFarm2 as well.
This is better illustrated by Figure 7.14, where a detail is taken out of Figure 7.13.
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Figure 7.14: The contribution to the total damage by each specific frequency band
during a normal operational day for the turbines of WindFarm2
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The contribution of the 3P movement (around 0,6 Hz), caused by the periodic
passing of the blades, is significant for both turbines of WindFarm2. This is
probably caused by the bigger size of the turbine. It general it can be seen WF2-
T2 has higher damage contributions than WF2-T1, except for the region around
0,2Hz. As already mentioned, WF2-T1 has an additional cyclic loading in this
frequency band at 1P, induced by a rotor imbalance.
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Figure 7.15: The contribution to the total damage by each specific frequency band
during a normal operational day for the turbines of WindFarm4

A closer look is taken to the turbines of WindFarm4. In previous Sections 7.3
and 7.4 is was clear the difference in damage between both turbines was relatively
high. In Figure 7.15 the difference in damage contribution can be seen. It is clear
WF4-T1 accumulates a lot more damage than WF4-T2. The first resonance fre-
quency is a bit lower for WF4-T1 than for WF4-T2, both around 0,3 Hz. Although
it seems a small difference, the slightly lower resonance frequency of WF4-T1 is
closer to the wave frequency as seen on the site that day. Therefore the first mode
of WF4-T1 is more excited by the wave frequency than the first mode of WF4-T2.
The other big difference between both turbines is the contribution of the second
resonance frequency. Here, the difference is over 0,5 Hz: for WF4-T1 the second
natural frequency is slightly lower than 1,5 Hz, while the one for WF4-T2 is around
2 Hz. Due to this difference, the second mode of WF4-T1 is far more excited by
the 6p rotor harmonic than the second mode of WF4-T2. Again, this causes more
damage at WF4-T1 than at WF4-T2.
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Figure 7.16 shows the results for a very windy day, with wind speeds above
cut-out. The most important observation is the importance of the first mode
compared to the quasi-static contribution. For all turbines (except WF2-T1), the
damage is dominated by the first order movement of the tower (and substructure).
In general, turbines installed on monopiles seem to be more sensitive for damage
at high winds than turbines installed on jackets. It is to say, for both turbines of
WindFarm2 the first order movement does not seem to dominate entirely, since
the 3P rotor harmonics contributes still quite a lot. For all other turbines, it is
definitely the first mode that dominates the damage accumulation.
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Figure 7.16: The contribution to the total damage by each specific frequency band
during a very windy day, up to cut-out, for multiple turbines

Figure 7.17 shows the results for a day which started with very low wind speeds
and ended with wind speeds around rated wind speed. Here the damage is clearly
dominated by the thrust load and the first mode. For frequencies higher than
0,5 Hz, the contribution become very low and even negative (hence missing data
points on the figure). The dominance of the thrust load in this case might not
surprise since the variation in wind speed this day was very high. Big, though
slow, stress cycles were introduced due to the wind varying between cut-in and
rated.
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Figure 7.17: The contribution to the total damage by each specific frequency band
during a gentle day, starting from cut-in, for multiple turbines
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7.6 Conclusion

In this chapter the accumulated damage of multiple instrumented turbines was
compared to each other based on environmental conditions. Although differences
in measured damage could be observed among the turbines, mainly due to different
structural properties, their relation to environmental conditions seemed very sim-
ilar. The difference in structural properties among the turbines can be explained
by a different foundation, a difference in water depth, a different design, a different
turbine, ...

Given the similar influence of environmental conditions on damage of multiple
turbines, the fleet leader concept is believed to be valid for those wind farms.
Therefore, one of the instrumented turbines was chosen as a fleet leader for the
farm. The measured damage at the fleet leader was extrapolated towards the
other instrumented wind turbines and compared to the actual measured damage.
Results of an older wind farm consisting of OWTs with very similar structural
properties proved the concept, with errors of maximum ca. 15%. However, it was
also shown complicating the extrapolation by including the turbulence intensity is
not always beneficial for the results.
Results of a different wind farm showed the concept is not valid if one of the
turbines has a defect, such as a rotor imbalance.
The same concept was applied on two other wind farms as well, where the difference
in structural properties between the OWTs are bigger. Also for these wind farms
no successful extrapolation was obtained.
A last application of the fleet leader was across different wind farms. Although
the turbine type usually differed from one farm to another, some OWTs seemed
surprisingly comparable. This indicates the structural properties of the OWT
have a bigger influence on the accumulated damage than the exact turbine type, if
the turbines are still comparable in terms of rated power and size. Moreover, the
differences in as designed fatigue values, such as safety factors, correction factors
or S-N curves, should be taken into account.

As the fleet leader concept based on environmental conditions was not success-
ful for most turbines, the reason for differences in damage was looked for as well.
In the last section of this chapter, a look was taken at the damage contribution of
different frequency bands.
With these insights the fleet leader concept could be updated by applying it sep-
arately for different frequency bands. A correction factor specified for each fre-
quency band based on the structural properties of the OWT can then be applied.
However the interaction between several frequency bands will be lost in this ap-
proach. Moreover, to quantify the needed correction factors, a very large number
of instrumented turbines would be needed.
An alternative for damage extrapolation within the farm is installing an additional
accelerometer on every turbine to capture the dynamic loads. In combination with
1s SCADA a stress history can be reconstructed for every turbine, as explained in
Chapter 5. This stress history can then be used to perform a lifetime assessment
on each turbine individually as explained in Chapter 6.
A last alternative given in this thesis relies on the successful results among OWTs
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with similar structural properties. Usually the OWTs in an offshore wind farm can
be divided into clusters. Within one cluster, all turbines have a similar design for
the foundation. Therefore the structural properties like mode shapes, resonance
frequencies and damping are comparable as well. This would mean the fleet leader
concept could be applied within one cluster and thus at least one turbine in each
cluster should be instrumented.



Chapter 8

Conclusions

8.1 Conclusions

For this PhD thesis, SCADA was extensively utilized, both 10min statistics and
1s data. Multiple applications were elaborated upon. First of all, a couple of tech-
niques based on 10min SCADA data were proposed for performance monitoring in
Chapter 3. All these techniques relied on the calculation of the actual power curve
of every turbine. Therefore, different techniques to calculate the power curve were
compared. The techniques for performance monitoring proved ability to detect
under performing turbines within a farm, as well as turbines whose production is
rapidly decreasing. However, the quality of the SCADA data proved to be of big
importance for the reliability of the results. More specifically the quality of the
wind speed measurement seemed to be insufficient for some turbines. The reason
would be the location of the anemometer, just behind the rotor. A workaround was
given by estimating the rotor effective wind speed. Unfortunately since no data
from an independent met mast was available, the method of rotor effective wind
speed could not be validated. The existing issues in the SCADA data however,
seem to have improved by using the REWS.

In Chapter 4, the transition towards fatigue assessment and high frequent
SCADA data was made. An important element in a fatigue assessment is a reli-
able representation of the actual loads acting on the wind turbine. One of these
loads can be estimated using 1s SCADA data, the thrust load. The estimation of
the thrust load is done using a neural network. A correlation analysis (both linear
and nonlinear) was performed to decide on the required input parameters. Wind
speed, rotor speed, blade pitch angle and generated power proved to be essential.
The suggested method was applied and validated on a variety of data sets. Using
a dataset obtained by simulations, the concept was proven in a controllable envi-
ronment.
Moreover the technique was validated on an offshore wind turbine with SCADA
data of good quality. Very good results were obtained when the model was trained
to estimate only under generating conditions. However, once standstill and idling
were included in training and validation dataset, results showed that some im-
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provement might be useful for non-generating conditions.
The resulting neural network was also validated on a different turbine of the same
type. Good results were obtained for this cross validation. This confirmed the
transferability of one thrust model among all turbines of the same type.
However, the technique proved to be very sensitive to the quality of the SCADA
data. When applying exactly the same technique to a different wind turbine with
SCADA data of less quality, strong filters were needed to avoid unrealistic results.
For the remaining data, results were acceptable but inferior to previous results. It
is believed these inferior results were caused by less accurate SCADA data.

The accurate estimation of only one load acting on the wind turbine is not
enough to perform an accurate and thorough fatigue assessment. Since all other
loads are not correlated to SCADA data or they are acting in a frequency range too
high to estimate with 1 Hz data, an alternative approach for full load estimation is
given in Chapter 5. Two different approaches are compared to estimate the stress
history at any location in the structure. Both approaches combine 1s thrust esti-
mates with additional accelerometers installed in the tower. One of the approaches
uses a modal decomposition and expansion technique, where the signal is divided
into different parts based on the frequency spectrum. Each part is then processed
differently. The second technique utilizes a Kalman filter, where no division is
necessary. Both techniques are validated on an operating offshore wind turbine.
Despite the drawback of inevitable division, the technique of modal decomposition
and expansion still outperforms the Kalman filter. Thus, the technique based on
the Kalman filter needs more improvement.

Moreover a lifetime assessment, using state-of-the-art techniques, is performed
for every weld of the substructure of an fictional offshore wind turbine in Chap-
ter 6. The approach consisted in the cycle counting based on rainflow counting of
the stress signal and a damage calculation based on the Palmgren-Miner rule and
a predefined S-N curve. The measured stress signal was extrapolated to all specific
locations of the welds. In this case a simplified extrapolation was applied, being a
simple static extrapolation. Based on the guidelines as used in industry the stress
signal is multiplied by several safety factors compensating the difference in dimen-
sions between the actual components and the test specimens used to compose the
S-N curve. The value of these safety factors and the choice for S-N curves is based
on recommendations given in industrial standards as well.
Damages are calculated every 10 minutes and linked to environmental and oper-
ating conditions based on SCADA and other meteorological data. Based on these
conditions, a damage table is composed and the measured damages are divided in
the appropriate bins. Afterwards the resulting damage table is multiplied with the
expected environmental probabilities to obtain the expected accumulated damage
for each considered operating state. Finally all resulting elements are superposed
to obtain an expected yearly damage and thus expected lifetime. The uncertainty
of the lifetime results is obtained by sample-based bootstrapping.
During the described procedure, a lot of options and choices are possible. If pos-
sible, the same values were chosen as during design. However, the possibilities
for environmental and operational probabilities were investigated a little deeper.
Comparison is made between the probabilities used in design and probabilities
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obtained from a long period of data. Moreover, the choice of (number of) envi-
ronmental parameters on which the probability histogram depends is given some
more thought. Finally, also the importance of including non-operational data,
representing standstill or rotor stops, is illustrated.

In the last Chapter 7 the damages measured at multiple turbines, each with its
own specifications, was compared. The ultimate goal was to validate whether the
damage measured at one turbine could be extrapolated accurately to other tur-
bines in the farms. To obtain this, the dependence of damage on environmental
conditions was compared. Significant differences were observed between turbines
with a different foundation and significant difference in size.
The fleet leader concept was applied on the turbines based on environmental con-
ditions only. The concept was proven using a wind farm consisting of OWTs with
very similar substructures and structural properties. However, some limitations
were shown as well. Acceptable differences in damage tables can be enlarged by
the extrapolation, especially when multiple environmental parameters are utilized.
Moreover, if one of the turbines suffers from an additional load compared to the
others, e.g. a rotor imbalance, the extrapolation results won’t hold.
The same concept was tested on other offshore wind farms as well. Unfortunately,
the damages of most turbines proved to be too different and results differed sig-
nificantly from the measured damage. These increased differences are mainly ex-
plained by differences in structural properties.
Given the big differences in damages, a final analysis was performed to find out
in which frequency bands the most damage was accumulated for each turbine in-
dividually. This was very different for all turbines and differed significantly for
different operating conditions. The difference in structural dynamics, indicated by
resonance frequencies, mode shapes and damping values, between the turbines is
considered the main driver for the different results.

In conclusion, the analyses done in this thesis can significantly increase the use
of the available SCADA data for both performance monitoring and lifetime as-
sessment. However, results of multiple analyses showed an important dependency
on the quality of the SCADA data. Therefore proper preprocessing and filtering
of SCADA data is crucial.

8.2 Future work

The possible improvements for the work presented in this thesis can be divided
in two main categories. First of all, the different steps taken towards a full farm
fatigue assessment should be combined. This is explained in more detail in Sec-
tion 8.2.1. On the other hand, improvements specific to the different parts are
proposed as well in Section 8.2.2.

8.2.1 Developing a full monitoring approach

A lifetime assessment where most of considered techniques are combined should
be done. As explained in Section 1.3, the ultimate goal of the lifetime assessment
approach as proposed in this thesis was to have an accurate indication of the
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consumed and remaining lifetime of all critical locations for all wind turbines
within one farm.

Figure 8.1: The obtained objectives (given in the different boxes) and the missing
pieces (indicated by the connecting arrows) to perform an accurate farm-wide
fatigue assessment of an offshore wind farm

Figure 8.1 shows the different steps taken to achieve this objective. Although
the main methodology was implemented and tested successfully for each of these
steps, the feed-through of information between the different steps is often still
missing. In order to obtain this, additional validation or an improvement of the
proposed techniques is needed.
First of all, the thrust load model based on SCADA data is used to estimate the
quasi-static load. This load signal should then be combined with acceleration mea-
surements using MDE or a Kalman filter, in order to obtain a reconstruction of the
stress history at multiple locations, preferably weld details, in the substructure of
the OWT. This should be validated using reliable SCADA data and for multiple
locations within the structure, preferably under water and even subsoil.
Furthermore a lifetime assessment is performed for each of these locations, as ex-
plained in Chapter 6. However, instead of using a static extrapolation factor, every
reconstructed stress signal is cycle counted individually. For this lifetime assess-
ment, it is important the reconstructed stress signal represents a period of at least
9 months and preferably over one year. Moreover the environmental parameters
based on which the extrapolation will be done, should be chosen carefully. It is
advisable all resulting bins include enough data, to prevent the need for filling up
empty bins and to reduce the effect of outliers. Moreover it is strongly advised
to extrapolate the damage separately for different operating conditions (at least
operating, standstill and rotor stops), given the high differences in damage. To do
this, a proper methodology is still needed to separate data points during standstill
from data points representing a rotor stop.
Finally a farm-wide fatigue assessment is required, for multiple fatigue-critical lo-
cations in the substructure. Here, several approaches are possible. A first one is
to develop the fleet leader concept as explained in Section 7.4 for multiple damage
contributions. However, by splitting up in damage contributions, the interaction
between different loads might be lost. Moreover, it will be extremely difficult to
quantify the effect of slightly different structural parameters, such as resonance
frequency, damping value or modeshapes, on the damage accumulation.
Another possibility is to install at least one accelerometer in each turbine of the
farm. With this accelerometer of good quality and sufficiently high sample fre-
quency and 1s SCADA data it would be possible to reconstruct the stress signal
at any location in structure using the techniques explained in Chapter 5 and thus
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perform a turbine-specific lifetime assessment based on the reconstructed stress
signals. With installation of only one accelerometer, only the first mode can be
taken into account during the reconstruction of the stress signal.
A third option can be to fully instrument at least one turbine within each cluster
of comparable turbines and perform the fleet leader concept for each cluster.
For each of these possibilities, an analysis comparing the accumulated damage at
different locations within the substructure is required. Moreover, the influence of
wave loads should be analyzed and taken into account as well. To do this, accurate
measurements regarding wave activity is needed.
Finally, a thorough analysis is needed about the effect of SCADA data of less
quality on the final results for accumulated damage and lifetime.

8.2.2 Other future work

As already indicated throughout this thesis, some topics still need improvement,
proper validation or simply more in-depth analyses:

• A proper validation of the rotor effective wind speed, as calculated in Sec-
tion 3.5 is necessary. Once this alternative for wind speed as measured by
the SCADA system is validated, the performance monitoring tools (and if
applicable any other methodologies presented in this thesis) can be updated
with this improved wind speed signal.

• An improvement of the thrust model, as explained in Section 4.4.2 is still
possible, especially for non-generating conditions. Although it is possible,
it is not advisable at this point. This is because the thrust load in non-
generating conditions has only very little influence on the total load and can
thus be ignored. Moreover, the impact of the data quality on the model
results is substantial. Therefore, such an improvement has no influence if
the SCADA data is of bad quality to begin with.

• A more useful improvement relates to the combination of the modeled thrust
load and acceleration measurements. Essentially, for both presented method-
ologies improvements are possible. In case of the technique using modal
decomposition and expansion, a workaround to deal with the transition be-
tween different frequency bands can improve the results significantly. In case
of the Kalman filter, improvement is needed to obtain better results, espe-
cially in frequency domain. In both cases a thorough validation is needed of
the combination with an improved 1s SCADA thrust model. This validation
is not only required for the TP-TW interface but, even more important, also
for different locations under water. Here, the effect of wave activity should
be checked as well.

• In terms of lifetime assessment, a better understanding of the effect of safety
factors and S-N curves on the damage and eventual lifetime can be beneficial
to account for possible future changes (e.g. due to corrosion). The developed
framework enables these analyses.
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• A more in-depth analysis of how the damage is accumulated at different
OWTs and its main drivers is still needed to enable extrapolation within the
entire wind farm.

• The comparison between damages accumulated at different wind turbines
should be repeated for several heights in the structure. The effect of the
different loads can be different above or under sea level.
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[41] Tuhfe Göçmen Bozkurt, Gregor Giebel, Niels Kjølstad Poulsen, and Mah-
mood Mirzaei. Wind speed estimation and parametrization of wake models
for downregulated offshore wind farms within the scope of posspow project.
In Journal of Physics: Conference Series, volume 524, page 012156. IOP
Publishing, 2014. doi: 10.1088/1742-6596/524/1/012156.

[42] J Beltrán, JJ Guerrero, JJ Melero, and A Llombart. Detection of nacelle
anemometer faults in a wind farm minimizing the uncertainty. Wind Energy,
16(6):939–952, 2013. doi: 10.1002/we.1535.

[43] International Electrotechnical Commission (IEC). WIND TURBINES - Part
12-1: Power performance of electricity producing wind turbines, 2005. First
edition.

[44] International Electrotechnical Commission (IEC). WIND TURBINES - Part
12-2: Power performance of electricity producing wind turbines based on
nacelle anemometry, 2008. Committee Draft (CD).

[45] T Burchhart. Power curve online monitoring - an alternative approach to
execute the power curve warranty content, 2013. Presentation at Wind Farm
Data Management and Analysis Conference Hamburg.

[46] Meik Schlechtingen, Ilmar Ferreira Santos, and Sofiane Achiche. Using data-
mining approaches for wind turbine power curve monitoring: a comparative
study. IEEE Transactions on Sustainable Energy, 4(3):671–679, 2013. doi:
10.1109/TSTE.2013.2241797.

[47] M Lydia, S Suresh Kumar, A Immanuel Selvakumar, and G Edwin Prem
Kumar. A comprehensive review on wind turbine power curve modeling
techniques. Renewable and Sustainable Energy Reviews, 30:452–460, 2014.
doi: 10.1016/j.rser.2013.10.030.

[48] Olivier Janssens, Nymfa Noppe, Christof Devriendt, Rik Van de Walle, and
Sofie Van Hoecke. Data-driven multivariate power curve modeling of offshore



203

wind turbines. Engineering Applications of Artificial Intelligence, 55:331–
338, 2016. doi: 10.1016/j.engappai.2016.08.003.

[49] Vestas. Vestas v90 3.0 mw. Catalogue, 2011.

[50] Clara M St Martin, Julie K Lundquist, Andrew Clifton, Gregory S Poulos,
and Scott J Schreck. Wind turbine power production and annual energy
production depend on atmospheric stability and turbulence. Wind Energy
Science (Online), 1:221–236, 2016. doi: 10.5194/wes-1-221-2016.

[51] Amy Stidworthy, David Carruthers, and Julian Hunt. Cerc activities under
the topfarm project: Wind turbine wake modelling using adms, 2011.

[52] JG Slootweg, SWH De Haan, H Polinder, and WL Kling. General model
for representing variable speed wind turbines in power system dynamics
simulations. IEEE Transactions on power systems, 18(1):144–151, 2003.
doi: 10.1109/TPWRS.2002.807113.

[53] Sachin Khajuria and Jaspreet Kaur. Implementation of pitch control of
wind turbine using simulink (matlab). International Journal of Advanced
Research in Computer Engineering & Technology (IJARCET), 1(4):pp–196,
2012.

[54] Thomas Ackermann. Wind power in power systems. John Wiley & Sons,
2005. doi: 10.1002/0470012684.

[55] Andrés Bravo Cuesta, Francisco Javier Gomez-Gil, Juan Vicente Mart́ın
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